BOUNDEDNESS IN A FLUX-LIMITED CHEMOTAXIS-HAPTOTAXIS MODEL WITH NONLINEAR DIFFUSION

被引:1
作者
Wang, Hui [1 ]
Zheng, Pan [1 ,2 ,3 ]
Hu, Runlin [1 ]
机构
[1] Chongqing Univ Posts & Telecommun, Coll Sci, Chongqing 400065, Peoples R China
[2] Univ Hong Kong, Shatin, Dept Math Chinese, Hong Kong, Peoples R China
[3] Yunnan Univ, Sch Math & Stat, Kunming 650091, Peoples R China
基金
中国国家自然科学基金;
关键词
Boundedness; chemotaxis-haptotaxis; flux-limitation; nonlinear diffusion; CLASSICAL-SOLUTIONS; GLOBAL EXISTENCE; SYSTEM;
D O I
10.3934/eect.2023004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with a flux-limited chemotaxis-haptotaxis system with nonlinear diffusion { u(t) = del center dot (D(u)del u) - chi del center dot (u|del v|(p-2)del v) - xi del center dot (u del w) + mu u(1 - u - w), v(t) = Delta v - v + u, w(t) = -vw, in Omega x (0, infinity), where Omega subset of R-n(n >= 2) is a smoothly bounded domain, chi, xi and mu are positive parameters, D(u) >= (u + 1)(-alpha) with 2-n/2n < alpha < 1/n . It is shown that for sufficiently smooth nonnegative initial data (u(0), v(0), w(0)) and 1 < p < n/n-1 (1 - alpha), the corresponding initial-boundary problem possesses a unique nonnegative global classical solution, which is uniformly bounded in time.
引用
收藏
页码:1133 / 1144
页数:12
相关论文
共 31 条
[1]  
Alikakos N.D, 1979, Commun. Part. Differ. Equ., V4, P827, DOI [DOI 10.1080/03605307908820113, 10.1080/03605307908820113]
[2]   On an elliptic chemotaxis system with flux limitation and subcritical signal production [J].
Boccardo, Lucio ;
Tello, J. Ignacio .
APPLIED MATHEMATICS LETTERS, 2022, 134
[3]   Quasilinear nonuniformly parabolic system modelling chemotaxis [J].
Cieslak, Tomasz .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 326 (02) :1410-1426
[4]  
Dal Passo R, 1998, SIAM J MATH ANAL, V29, P321
[5]   EXISTENCE AND UNIQUENESS OF GLOBAL CLASSICAL SOLUTIONS TO A TWO DIMENSIONAL TWO SPECIES CANCER INVASION HAPTOTAXIS MODEL [J].
Giesselmann, Jan ;
Kolbe, Niklas ;
Lukacova-Medvidova, Maria ;
Sfakianakis, Nikolaos .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2018, 23 (10) :4397-4431
[6]   Boundedness in a three-dimensional chemotaxis-haptotaxis model with nonlinear diffusion [J].
Hu, Xuegang ;
Wang, Liangchen ;
Mu, Chunlai ;
Li, Ling .
COMPTES RENDUS MATHEMATIQUE, 2017, 355 (02) :181-186
[7]   RADIALLY SYMMETRIC SOLUTIONS FOR A KELLER-SEGEL SYSTEM WITH FLUX LIMITATION AND NONLINEAR DIFFUSION [J].
Ignacio Tello, J. .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2022, 15 (10) :3003-3023
[8]   Blow up of solutions for a Parabolic-Elliptic chemotaxis system with gradient dependent chemotactic coefficient [J].
Ignacio Tello, J. .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2022, 47 (02) :307-345
[9]   Global boundedness to a chemotaxis-haptotaxis model with nonlinear diffusion [J].
Jia, Zhe ;
Yang, Zuodong .
APPLIED MATHEMATICS LETTERS, 2020, 103
[10]   A quasilinear chemotaxis-haptotaxis model: The roles of nonlinear diffusion and logistic source [J].
Liu, Ji ;
Wang, Yifu .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (06) :2107-2121