Physics-informed deep learning cascade loss model

被引:11
|
作者
Feng, Yunyang [1 ,2 ]
Song, Xizhen [1 ]
Yuan, Wei [1 ,2 ]
Lu, Hanan [1 ]
机构
[1] Beihang Univ, Sch Energy & Power Engn, Beijing 100083, Peoples R China
[2] Beihang Univ, Natl Key Lab Sci & Technol Aeroengine Aerothermody, Beijing 100083, Peoples R China
关键词
Surrogate model; Loss prediction; Deep learning; Neural networks; Physics-informed; ARTIFICIAL-NEURAL-NETWORK;
D O I
10.1016/j.ast.2023.108165
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The design procedure of aero-engine compressor requires empirical models such as cascade loss model and deviation model. With accurate predictions of basic cascade performance by empirical model, better designs would be obtained and the cost would be reduced. A number of empirical models have been developed and most of them build mathematical equations based on experimental data. It is difficult to modify and broaden the scope of application for empirical models because of its inadequate ability to fit strong nonlinear function relationship and lack of data. Neural networks, which are widely used nowadays, are applied to solve this problem but a simple end-to-end neural network only slightly improves the model performance due to the neglect of flow field details and the similarity of different samples. A promising way to solve the problems is to embed the physics mechanism or flow field details into neural networks as intermediate variables to guide the learning of models. A physics-informed deep learning cascade loss model is proposed. By adjusting the architecture of neural network and the data structure, model can build the relationship of input and output in a more reasonable way while providing a prediction of flow fields. This paper verified the superiority of deep learning model, which has no physics informed, with a 22.3% error reduction when compared to empirical models. A physics-informed model is built and trained with the velocity distribution in boundary layer is chosen as intermediate variable and the influencing factors of physics-informed models are explored. The error of physics -informed model decreases 57.4% overall, and over 60% at high Mach numbers and high incidences compared to empirical model. The physics informed deep learning model is promising to replace the empirical models in compressor design since it shows better performance and gives a local description of the cascade flow field, which can be utilized in subsequent cascade design.(c) 2023 Elsevier Masson SAS. All rights reserved.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Phase Retrieval for Fourier THz Imaging with Physics-Informed Deep Learning
    Xiang, Mingjun
    Wang, Lingxiao
    Yuan, Hui
    Zhou, Kai
    Roskos, Hartmut G.
    2022 47TH INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER AND TERAHERTZ WAVES (IRMMW-THZ 2022), 2022,
  • [42] Unsupervised physics-informed deep learning for assessing pulmonary artery hemodynamics
    Liu, Xiujian
    Xie, Baihong
    Zhang, Dong
    Zhang, Heye
    Gao, Zhifan
    de Albuquerque, Victor Hugo C.
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 257
  • [43] Phase-field modeling of fracture with physics-informed deep learning
    Manav, M.
    Molinaro, R.
    Mishra, S.
    De Lorenzis, L.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 429
  • [44] Physics-Informed deep learning to predict flow fields in cyclone separators
    Queiroz, L. H.
    Santos, F. P.
    Oliveira, J. P.
    Souza, M. B.
    DIGITAL CHEMICAL ENGINEERING, 2021, 1
  • [45] Physics-informed deep-learning applications to experimental fluid mechanics
    Eivazi, Hamidreza
    Wang, Yuning
    Vinuesa, Ricardo
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (07)
  • [46] A PHYSICS-INFORMED DEEP LEARNING APPROACH FOR HDGT COMPRESSOR PERFORMANCE SIMULATION
    Wei, Manman
    Jiang, Xiaomo
    Liu, Yiyang
    Ge, Xin
    PROCEEDINGS OF ASME TURBO EXPO 2024: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, GT2024, VOL 12D, 2024,
  • [47] Physics-Informed Deep Learning for Computational Elastodynamics without Labeled Data
    Rao, Chengping
    Sun, Hao
    Liu, Yang
    JOURNAL OF ENGINEERING MECHANICS, 2021, 147 (08)
  • [48] Physics-informed deep learning for structural dynamics under moving load
    Liang, Ruihua
    Liu, Weifeng
    Fu, Yuguang
    Ma, Meng
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2024, 284
  • [49] Physics-informed deep learning for modelling particle aggregation and breakage processes
    Chen, Xizhong
    Wang, Li Ge
    Meng, Fanlin
    Luo, Zheng-Hong
    Chemical Engineering Journal, 2021, 426
  • [50] Physics-informed deep learning: A promising technique for system reliability assessment
    Zhou, Taotao
    Droguett, Enrique Lopez
    Mosleh, Ali
    APPLIED SOFT COMPUTING, 2022, 126