Physics-informed deep learning cascade loss model

被引:11
|
作者
Feng, Yunyang [1 ,2 ]
Song, Xizhen [1 ]
Yuan, Wei [1 ,2 ]
Lu, Hanan [1 ]
机构
[1] Beihang Univ, Sch Energy & Power Engn, Beijing 100083, Peoples R China
[2] Beihang Univ, Natl Key Lab Sci & Technol Aeroengine Aerothermody, Beijing 100083, Peoples R China
关键词
Surrogate model; Loss prediction; Deep learning; Neural networks; Physics-informed; ARTIFICIAL-NEURAL-NETWORK;
D O I
10.1016/j.ast.2023.108165
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The design procedure of aero-engine compressor requires empirical models such as cascade loss model and deviation model. With accurate predictions of basic cascade performance by empirical model, better designs would be obtained and the cost would be reduced. A number of empirical models have been developed and most of them build mathematical equations based on experimental data. It is difficult to modify and broaden the scope of application for empirical models because of its inadequate ability to fit strong nonlinear function relationship and lack of data. Neural networks, which are widely used nowadays, are applied to solve this problem but a simple end-to-end neural network only slightly improves the model performance due to the neglect of flow field details and the similarity of different samples. A promising way to solve the problems is to embed the physics mechanism or flow field details into neural networks as intermediate variables to guide the learning of models. A physics-informed deep learning cascade loss model is proposed. By adjusting the architecture of neural network and the data structure, model can build the relationship of input and output in a more reasonable way while providing a prediction of flow fields. This paper verified the superiority of deep learning model, which has no physics informed, with a 22.3% error reduction when compared to empirical models. A physics-informed model is built and trained with the velocity distribution in boundary layer is chosen as intermediate variable and the influencing factors of physics-informed models are explored. The error of physics -informed model decreases 57.4% overall, and over 60% at high Mach numbers and high incidences compared to empirical model. The physics informed deep learning model is promising to replace the empirical models in compressor design since it shows better performance and gives a local description of the cascade flow field, which can be utilized in subsequent cascade design.(c) 2023 Elsevier Masson SAS. All rights reserved.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Physics-informed deep learning for one-dimensional consolidation
    Yared W.Bekele
    Journal of Rock Mechanics and Geotechnical Engineering, 2021, (02) : 420 - 430
  • [22] Physics-informed deep learning approach for modeling crustal deformation
    Okazaki, Tomohisa
    Ito, Takeo
    Hirahara, Kazuro
    Ueda, Naonori
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [23] Physics-informed Deep Learning for Flow Modelling and Aerodynamic Optimization
    Sun, Yubiao
    Sengupta, Ushnish
    Juniper, Matthew
    2022 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2022, : 1149 - 1155
  • [24] Room impulse response reconstruction with physics-informed deep learning
    Karakonstantis, Xenofon
    Caviedes-Nozal, Diego
    Richard, Antoine
    Fernandez-Grande, Efren
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2024, 155 (02): : 1048 - 1059
  • [25] Physics-informed deep generative learning for quantitative assessment of the retina
    Brown, Emmeline E.
    Guy, Andrew A.
    Holroyd, Natalie A.
    Sweeney, Paul W.
    Gourmet, Lucie
    Coleman, Hannah
    Walsh, Claire
    Markaki, Athina E.
    Shipley, Rebecca
    Rajendram, Ranjan
    Walker-Samuel, Simon
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [26] Towards physics-informed deep learning for turbulent flow prediction
    Wang, Rui
    Kashinath, Karthik
    Mustafa, Mustafa
    Albert, Adrian
    Yu, Rose
    KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2020, : 1457 - 1466
  • [27] A Framework for Physics-Informed Deep Learning Over Freeform Domains
    Mezzadri, Francesco
    Gasick, Joshua
    Qian, Xiaoping
    COMPUTER-AIDED DESIGN, 2023, 160
  • [28] Physics-informed deep learning approach for modeling crustal deformation
    Tomohisa Okazaki
    Takeo Ito
    Kazuro Hirahara
    Naonori Ueda
    Nature Communications, 13
  • [29] A physics-informed deep learning approach for bearing fault detection
    Shen, Sheng
    Lu, Hao
    Sadoughi, Mohammadkazem
    Hu, Chao
    Nemani, Venkat
    Thelen, Adam
    Webster, Keith
    Darr, Matthew
    Sidon, Jeff
    Kenny, Shawn
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2021, 103
  • [30] Physics-informed deep learning for one-dimensional consolidation
    Bekele, Yared W.
    JOURNAL OF ROCK MECHANICS AND GEOTECHNICAL ENGINEERING, 2021, 13 (02) : 420 - 430