Contextual anomaly detection for multivariate time series data

被引:2
|
作者
Kim, Hyojoong [1 ]
Kim, Heeyoung [1 ,2 ]
机构
[1] Korea Adv Inst Sci & Technol KAIST, Dept Ind & Syst Engn, Daejeon, South Korea
[2] Korea Adv Inst Sci & Technol KAIST, Dept Ind & Syst Engn, Daejeon 34141, South Korea
基金
新加坡国家研究基金会;
关键词
contextual anomaly detection; multivariate data; sequential data; stacked long short-term memory; CONTROL CHART; FUSION;
D O I
10.1080/08982112.2023.2179404
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
With the advancement of sensing technologies, sensor data collected over time have become more useful for detecting anomalies in underlying processes and systems. Sensor data are often affected by contextual variables, such as equipment settings, and can have different patterns, even in normal states depending on the contextual variables. Motivated by this problem, we propose a contextual anomaly detection method for multivariate time series data. We first build a prediction model using training data consisting of only normal observations, and then perform anomaly detection based on the prediction errors for future observations. The prediction model is based on a long short-term memory (LSTM) network that can flexibly model complex relationships between variables as well as temporal correlations between successive time points using the high expressive power of deep recurrent neural networks. In particular, to incorporate the contextual information while ensuring that it does not propagate over time but affects the response data only at specific target time points, we extend the standard LSTM by adding a layer for the contextual variables separately for each time step. The performance of the proposed method was verified with several open-source datasets and a real dataset from a global tire company.
引用
收藏
页码:686 / 695
页数:10
相关论文
共 50 条
  • [41] DUMA: Dual Mask for Multivariate Time Series Anomaly Detection
    Pan, Jinwei
    Ji, Wendi
    Zhong, Bo
    Wang, Pengfei
    Wang, Xiaoling
    Chen, Jin
    IEEE SENSORS JOURNAL, 2023, 23 (03) : 2433 - 2442
  • [42] Conditional normalizing flow for multivariate time series anomaly detection
    Guan, Siwei
    He, Zhiwei
    Ma, Shenhui
    Gao, Mingyu
    ISA TRANSACTIONS, 2023, 143 : 231 - 243
  • [43] EAD: An Efficient Anomaly Detection Algorithm for Multivariate Time Series
    Ma, Dehong
    Ding, Bo
    Feng, Dawei
    Liu, Hui
    2021 IEEE 33RD INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2021), 2021, : 609 - 613
  • [44] AURORA: A Unified fRamework fOR Anomaly detection on multivariate time series
    Lin Zhang
    Wenyu Zhang
    Maxwell J. McNeil
    Nachuan Chengwang
    David S. Matteson
    Petko Bogdanov
    Data Mining and Knowledge Discovery, 2021, 35 : 1882 - 1905
  • [45] AURORA: A Unified fRamework fOR Anomaly detection on multivariate time series
    Zhang, Lin
    Zhang, Wenyu
    McNeil, Maxwell J.
    Chengwang, Nachuan
    Matteson, David S.
    Bogdanov, Petko
    DATA MINING AND KNOWLEDGE DISCOVERY, 2021, 35 (05) : 1882 - 1905
  • [46] Analysis of time series data for anomaly detection
    Ferencz, Katalin
    Domokos, Jozsef
    Kovacs, Levente
    2022 IEEE 22ND INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND INFORMATICS AND 8TH IEEE INTERNATIONAL CONFERENCE ON RECENT ACHIEVEMENTS IN MECHATRONICS, AUTOMATION, COMPUTER SCIENCE AND ROBOTICS (CINTI-MACRO), 2022, : 95 - 100
  • [47] Anomaly Detection for Time Series Data Stream
    Wang, Qifan
    Yan, Bo
    Su, Hongyi
    Zheng, Hong
    2021 IEEE 6TH INTERNATIONAL CONFERENCE ON BIG DATA ANALYTICS (ICBDA 2021), 2021, : 118 - 122
  • [48] Contextual Anomaly Detection in Time Series Using Dynamic Bayesian Network
    Tripathi, Achyut Mani
    Baruah, Rashmi Dutta
    INTELLIGENT INFORMATION AND DATABASE SYSTEMS (ACIIDS 2020), PT II, 2020, 12034 : 333 - 342
  • [49] GAN-based Anomaly Detection and Localization of Multivariate Time Series Data for Power Plant
    Choi, Yeji
    Lim, Hyunki
    Choi, Heeseung
    Kim, Ig-Jae
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING (BIGCOMP 2020), 2020, : 71 - 74
  • [50] MAD-GAN: Multivariate Anomaly Detection for Time Series Data with Generative Adversarial Networks
    Li, Dan
    Chen, Dacheng
    Shi, Lei
    Jin, Baihong
    Goh, Jonathan
    Ng, See-Kiong
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2019: TEXT AND TIME SERIES, PT IV, 2019, 11730 : 703 - 716