Contextual anomaly detection for multivariate time series data

被引:2
|
作者
Kim, Hyojoong [1 ]
Kim, Heeyoung [1 ,2 ]
机构
[1] Korea Adv Inst Sci & Technol KAIST, Dept Ind & Syst Engn, Daejeon, South Korea
[2] Korea Adv Inst Sci & Technol KAIST, Dept Ind & Syst Engn, Daejeon 34141, South Korea
基金
新加坡国家研究基金会;
关键词
contextual anomaly detection; multivariate data; sequential data; stacked long short-term memory; CONTROL CHART; FUSION;
D O I
10.1080/08982112.2023.2179404
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
With the advancement of sensing technologies, sensor data collected over time have become more useful for detecting anomalies in underlying processes and systems. Sensor data are often affected by contextual variables, such as equipment settings, and can have different patterns, even in normal states depending on the contextual variables. Motivated by this problem, we propose a contextual anomaly detection method for multivariate time series data. We first build a prediction model using training data consisting of only normal observations, and then perform anomaly detection based on the prediction errors for future observations. The prediction model is based on a long short-term memory (LSTM) network that can flexibly model complex relationships between variables as well as temporal correlations between successive time points using the high expressive power of deep recurrent neural networks. In particular, to incorporate the contextual information while ensuring that it does not propagate over time but affects the response data only at specific target time points, we extend the standard LSTM by adding a layer for the contextual variables separately for each time step. The performance of the proposed method was verified with several open-source datasets and a real dataset from a global tire company.
引用
收藏
页码:686 / 695
页数:10
相关论文
共 50 条
  • [1] Anomaly detection in multivariate time series of drilling data
    Altindal, Mehmet Cagri
    Nivlet, Philippe
    Tabib, Mandar
    Rasheed, Adil
    Kristiansen, Tron Golder
    Khosravanian, Rasool
    GEOENERGY SCIENCE AND ENGINEERING, 2024, 237
  • [2] Clustering-based anomaly detection in multivariate time series data
    Li, Jinbo
    Izakian, Hesam
    Pedrycz, Witold
    Jamal, Iqbal
    APPLIED SOFT COMPUTING, 2021, 100
  • [3] Clustering-based anomaly detection in multivariate time series data
    Li, Jinbo
    Izakian, Hesam
    Pedrycz, Witold
    Jamal, Iqbal
    Applied Soft Computing, 2021, 100
  • [4] Anomaly Detection Paradigm for Multivariate Time Series Data Mining for Healthcare
    Razaque, Abdul
    Abenova, Marzhan
    Alotaibi, Munif
    Alotaibi, Bandar
    Alshammari, Hamoud
    Hariri, Salim
    Alotaibi, Aziz
    APPLIED SCIENCES-BASEL, 2022, 12 (17):
  • [5] Anomaly Detection Method for Multivariate Time Series Data Based on BLTranAD
    Zhang, Chuanlei
    Wu, Songlin
    Gao, Ming
    Li, Yubo
    Shi, Gongcheng
    Li, Yicong
    Ma, Hui
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT XIII, ICIC 2024, 2024, 14874 : 16 - 26
  • [6] Unsupervised Deep Anomaly Detection for Industrial Multivariate Time Series Data
    Liu, Wenqiang
    Yan, Li
    Ma, Ningning
    Wang, Gaozhou
    Ma, Xiaolong
    Liu, Peishun
    Tang, Ruichun
    APPLIED SCIENCES-BASEL, 2024, 14 (02):
  • [7] Generative Anomaly Detection in Multivariate Time Series
    Hoh, M.
    Schöttl, A.
    Schaub, H.
    Leuze, N.
    Automation, Robotics and Communications for Industry 4.0/5.0, 2023, 2023 : 171 - 174
  • [8] An anomaly detection model for multivariate time series with anomaly perception
    Wei, Dong
    Sun, Wu
    Zou, Xiaofeng
    Ma, Dan
    Xu, Huarong
    Chen, Panfeng
    Yang, Chaoshu
    Chen, Mei
    Li, Hui
    PEERJ COMPUTER SCIENCE, 2024, 10
  • [9] An anomaly detection model for multivariate time series with anomaly perception
    Wei, Dong
    Sun, Wu
    Zou, Xiaofeng
    Ma, Dan
    Xu, Huarong
    Chen, Panfeng
    Yang, Chaoshu
    Chen, Mei
    Li, Hui
    PeerJ Computer Science, 2024, 10
  • [10] Multivariate Time Series Anomaly Detection with Fourier Time Series Transformer
    Ye, Yufeng
    He, Qichao
    Zhang, Peng
    Xiao, Jie
    Li, Zhao
    2023 IEEE 12TH INTERNATIONAL CONFERENCE ON CLOUD NETWORKING, CLOUDNET, 2023, : 381 - 388