Spatial, spatio-temporal, and origin-destination flow analyses of patients with severe acute respiratory syndrome hospitalized for COVID-19 in Southeastern Brazil, 2020-2021

被引:0
作者
Palasio, Raquel Gardini Sanches [1 ,3 ]
Lorenz, Camila [1 ]
Lucas, Pamella Cristina de Carvalho [1 ]
Nielsen, Lucca [1 ]
Masuda, Eliana Tiemi [1 ]
Trevisan, Camila Martins [1 ]
Cortez, Andre Lazzeri [1 ]
Mello Monteiro, Pedro de Campos [1 ]
Simoes, Caroline Salomao [1 ]
Ferreira, Patricia Marques [1 ]
Pellini, Alessandra Cristina Guedes [2 ]
Yu, Ana Lucia Frugis [1 ]
Carvalhanas, Telma Regina Marques [1 ]
机构
[1] Coordenadoria Controle Doencas, Ctr Vigilancia Epidemiol Prof Alexandre Vranjac, Div Doencas Transmissao Respiratoria, Secretaria Saude Estado Sao Paulo, Sao Paulo, SP, Brazil
[2] Univ Nove Julho, Fac Med, Programa Pos Grad Cidades Inteligentes & Sustentav, Sao Paulo, Brazil
[3] Coordenadoria Controle Doencas, Ctr Vigilancia Epidemiol Prof Alexandre Vranjac, Div Doencas Transmissao Respiratoria, Secretaria Saude Estado Sao Paulo, Av Dr Arnaldo,351 Cerqueira Cesar, BR-01246000 Sao Paulo, SP, Brazil
来源
REVISTA DO INSTITUTO DE MEDICINA TROPICAL DE SAO PAULO | 2023年 / 65卷
关键词
SARS-CoV-2; infection; Pandemics; Virus; SaTScan; Spatial analysis; COVID-19; HEALTH; STATE;
D O I
10.1590/S1678-9946202365006
中图分类号
R51 [传染病];
学科分类号
100401 ;
摘要
Brazil experienced one of the fastest increasing numbers of coronavirus disease (COVID-19) cases worldwide. The Sao Paulo State (SPS) reported a high incidence, particularly in Sao Paulo municipality. This study aimed to identify clusters of incidence and mortality of hospitalized patients with severe acute respiratory syndrome for COVID-19 in the SPS, in 2020-2021, and describe the origin flow pattern of the cases. Cases and mortality risk area clusters were identified through different analyses (spatial clusters, spatio-temporal clusters, and spatial variation in temporal trends) by weighting areas. Ripley's K12-function verified the spatial dependence between the cases and infrastructure. There were 517,935 reported cases, with 152,128 cases resulting in death. Of the 470,441 patients hospitalized and residing in the SPS, 357,526 remained in the original municipality, while 112,915 did not. Cases and death clusters were identified in the Sao Paulo metropolitan region (SPMR) and Baixada Santista region in the first study period, and in the SPMR and the Campinas, Sao Jose do Rio Preto, Barretos, and Sorocaba municipalities during the second period. We highlight the priority areas for control and surveillance actions for COVID-19, which could lead to better outcomes in future outbreaks.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 40 条
  • [21] Instituto Brasileiro de Geografia e Estatistica, EST POP
  • [22] Instituto Brasileiro de Geografia e Estatistica, Censo Demografico
  • [23] Comparison of tests for spatial heterogeneity on data with global clustering patterns and outliers
    Jackson, Monica C.
    Huang, Lan
    Luo, Jun
    Hachey, Mark
    Feuer, Eric
    [J]. INTERNATIONAL JOURNAL OF HEALTH GEOGRAPHICS, 2009, 8 : 55
  • [24] The effect of human mobility and control measures on the COVID-19 epidemic in China
    Kraemer, Moritz U. G.
    Yang, Chia-Hung
    Gutierrez, Bernardo
    Wu, Chieh-Hsi
    Klein, Brennan
    Pigott, David M.
    du Plessis, Louis
    Faria, Nuno R.
    Li, Ruoran
    Hanage, William P.
    Brownstein, John S.
    Layan, Maylis
    Vespignani, Alessandro
    Tian, Huaiyu
    Dye, Christopher
    Pybus, Oliver G.
    Scarpino, Samuel V.
    [J]. SCIENCE, 2020, 368 (6490) : 493 - +
  • [25] A spatial scan statistic
    Kulldorff, M
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1997, 26 (06) : 1481 - 1496
  • [26] Lorenz Camila, 2021, Rev. bras. epidemiol., V24, pe210040, DOI 10.1590/1980-549720210040
  • [27] LOTWICK HW, 1982, J ROY STAT SOC B MET, V44, P406
  • [28] Lucas PC, 2021, B EPIDEMIOL PAULISTA, V18, P8
  • [29] Natalino M., 2020, Estimativa da Populacao de Rua no Brasil
  • [30] Spatial Analysis of COVID-19 cases and intensive care beds in the State of Ceara, Brazil
    Pedrosa, Nathalia Lima
    Silva de Albuquerque, Nila Larisse
    [J]. CIENCIA & SAUDE COLETIVA, 2020, 25 : 2461 - 2468