Na-ion conducting filler embedded 3D-electrospun nanofibrous hybrid solid polymer membrane electrolyte for high-performance Na-ion capacitor

被引:20
作者
Maurya, Dheeraj Kumar [1 ]
Dhanusuraman, Ragupathy [2 ]
Guo, John Zhanhu [3 ]
Angaiah, Subramania [1 ]
机构
[1] Pondicherry Univ, Ctr Nanosci & Technol, Electromat Res Lab, Pondicherry 605014, India
[2] Natl Inst Technol Puducherry, Dept Chem, Nano Electrochem Lab NEL, Karaikal 609609, India
[3] Univ Tennessee, Dept Chem & Biomol Engn, Integrated Composites Lab ICL, Knoxville, TN 37996 USA
关键词
Na-ion capacitor; Electrospinning; Polymer electrolyte; 3D-nanofibrous membrane; Ionic conductivity; DOPED NA2ZN2TEO6; SODIUM;
D O I
10.1007/s42114-022-00604-1
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Synergistic coupling of polymer with highly Na+ conducting ceramics is an effective approach to alleviate the poor thermal stability and low ionic conductivity challenges of an electrolyte. Herein, we have reported a rational design of Na2Zn1.97Ca0.03TeO6 (NZCTO) nanofillers-reinforced poly(vinylidene fluoride)-co-hexafluoropropylene (PVDF-HFP)-based 3D-electrospun nanofibrous hybrid polymer membrane (ESHPM) as a separator cum electrolyte obtained by an electrospinning technique. Physico-chemical properties of NZCTO and ESHPMs were characterized for its morphology, porosity and electrolyte uptake measurement, crystallinity, thermal stability, dimensional stability, operating potential window, and ionic conductivity. ESHPME immobilizing a liquid electrolyte solution [1 M of sodium hexafluorophosphate (NaPF6)] in ethylene carbonate (EC)/dimethyl carbonate (DMC), 1/1v/v) exhibited an excellent ionic conductivity (sigma(RT) ? 1.47 x 10(-3) S cm(-1)). A Na-ion capacitor (NIC) comprising high-capacity NaCo0.7Al0.3O2 (NCAO) and rapid ion-absorbing activated carbon (AC)-based electrodes with ESHPM (10 wt.% NZCTO) electrolyte delivers the specific capacitance of 103.57 Fg(-1) at the current density of 1 Ag-1. This NIC retains 89% of its initial capacitance up to 1000 charge-discharge cycles. Furthermore, NIC demonstrated a maximum energy and power density of ? 36.82 W h kg(-1) and ? 5.71 kW kg(-1), respectively. This research promises to develop high-performing NICs with high energy and power densities.
引用
收藏
页数:10
相关论文
共 50 条
[11]   A Fast Na-Ion Conduction Polymer Electrolyte via Triangular Synergy Strategy for Quasi-Solid-State Batteries [J].
Luo, Jun ;
Yang, Mingrui ;
Wang, Denghui ;
Zhang, Jiyu ;
Song, Keming ;
Tang, Guochuan ;
Xie, Zhengkun ;
Guo, Xiaoniu ;
Shi, Yu ;
Chen, Weihua .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (52)
[12]   FeSe2 Microspheres as a High-Performance Anode Material for Na-Ion Batteries [J].
Zhang, Kai ;
Hu, Zhe ;
Liu, Xue ;
Tao, Zhanliang ;
Chen, Jun .
ADVANCED MATERIALS, 2015, 27 (21) :3305-3309
[13]   Porous carbon-free SnSb anodes for high-performance Na-ion batteries [J].
Choi, Jeong-Hee ;
Ha, Choong-Wan ;
Choi, Hae-Young ;
Seong, Jae-Wook ;
Park, Cheol-Min ;
Lee, Sang -Min .
JOURNAL OF POWER SOURCES, 2018, 386 :34-39
[14]   In Situ Plastic-Crystal-Coated Cathode toward High-Performance Na-Ion Batteries [J].
Wang, Haibo ;
Ding, Feixiang ;
Wang, Yuqi ;
Han, Zhen ;
Dang, Rongbin ;
Yu, Hao ;
Yang, Yang ;
Chen, Zhao ;
Li, Yuqi ;
Xie, Fei ;
Zhang, Shiguang ;
Zhang, Hongzhou ;
Song, Dawei ;
Rong, Xiaohui ;
Zhang, Lianqi ;
Xu, Juping ;
Yin, Wen ;
Lu, Yaxiang ;
Xiao, Ruijuan ;
Su, Dong ;
Chen, Liquan ;
Hu, Yong-Sheng .
ACS ENERGY LETTERS, 2023, 8 (03) :1434-1444
[15]   Designing high-performance phosphate cathode toward Ah-level Na-ion batteries [J].
Zhang, Xusheng ;
Jiang, Liwei ;
Xu, Chunliu ;
Chen, Zhao ;
Zhou, Lin ;
Dang, Rongbin ;
Zhao, Junmei ;
Hu, Yong-Sheng .
ENERGY STORAGE MATERIALS, 2024, 72
[16]   Hierarchically Porous Vanadium-Based Cathode Materials for High-Performance Na-Ion Batteries [J].
Aruchamy, Kanakaraj ;
Ramasundaram, Subramaniyan ;
Balasankar, Athinarayanan ;
Divya, Sivasubramani ;
Fei, Ling ;
Oh, Tae Hwan .
BATTERIES-BASEL, 2024, 10 (07)
[17]   High-Performance NaVO3 with Mixed Cationic and Anionic Redox Reactions for Na-Ion Battery Applications [J].
Su, Bizhe ;
Wu, Shuilin ;
Liang, Hanqin ;
Zhou, Wenchong ;
Liu, Junnan ;
Goonetilleke, Damian ;
Sharma, Neeraj ;
Sit, Patrick H-L ;
Zhang, Wenjun ;
Yu, Denis Y. W. .
CHEMISTRY OF MATERIALS, 2020, 32 (20) :8836-8844
[18]   Hard Carbon Originated from Polyvinyl Chloride Nanofibers As High-Performance Anode Material for Na-Ion Battery [J].
Bai, Ying ;
Wang, Zhen ;
Wu, Chuan ;
Xu, Rui ;
Wu, Feng ;
Liu, Yuanchang ;
Li, Hui ;
Li, Yu ;
Lu, Jun ;
Amine, Khalil .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (09) :5598-5604
[19]   Eco-Friendly Synthesis of 3D Disordered Carbon Materials for High-Performance Dual Carbon Na-Ion Capacitors [J].
Fombona-Pascual, Alba ;
Diez, Noel ;
Fuertes, Antonio B. ;
Sevilla, Marta .
CHEMSUSCHEM, 2022, 15 (19)
[20]   High energy Na-Ion capacitor employing graphitic carbon fibers from waste rubber with diglyme-based electrolyte [J].
Divya, Madhusoodhanan Lathika ;
Jayaraman, Sundaramurthy ;
Lee, Yun-Sung ;
Aravindan, Vanchiappan .
CHEMICAL ENGINEERING JOURNAL, 2021, 426