Using Photonic Glasses as Colored Covers for Solar Energy Harvesting

被引:9
作者
Li, Zhenpeng [1 ]
Li, Sinan [1 ]
Ma, Tao [1 ]
机构
[1] Shanghai Jiao Tong Univ, Engn Res Ctr Solar Energy & Refrigerat MOE, Sch Mech Engn, Shanghai 200240, Peoples R China
来源
ADVANCED OPTICAL MATERIALS | 2023年 / 11卷 / 05期
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
colloidal assembly; disordered photonics; photonic glass; solar energy; structural colors; IRIDESCENT STRUCTURAL COLORS; CLOSE PACKING;
D O I
10.1002/adom.202202370
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The increasing demand for renewable energy is promoting technologies that integrate solar energy harvesting materials with the human living environment, such as building-integrated photovoltaics. This places requirements on developing colored covers with a trade-off between efficiency and aesthetics, providing a new stage for the large-scale application of structural color technologies. This study investigates the theoretic feasibility of employing the photonic glass, a random packing of monodisperse dielectric microspheres, as the colored cover for solar energy harvesting. Based on numerous optical simulations, the color and average solar transmissivity of the photonic glasses with varying parameters are evaluated. Results show that using non-absorbing microspheres with relatively high refractive index, about 3 mu m thick photonic glasses can enable colors with lightness over 50 while keeping average solar transmissivity over 80%. Due to the short-range structural correlation, it is demonstrated that photonic glasses can generate purple, blue, cyan, light green, and gray colors, but cannot help with yellow and red hues. Finally, the effects of several enhancement methods are clarified, and possible ways for expanding the color range are demonstrated. These results provide a comprehensive guide to the practical implementations of structural color using photonic glasses, particularly in the colorization of solar energy materials.
引用
收藏
页数:10
相关论文
共 48 条
[1]   Resonant transport and near-field effects in photonic glasses [J].
Aubry, Geoffroy J. ;
Schertel, Lukas ;
Chen, Mengdi ;
Weyer, Henrik ;
Aegerter, Christof M. ;
Polarz, Sebastian ;
Coelfen, Helmut ;
Maret, Georg .
PHYSICAL REVIEW A, 2017, 96 (04)
[2]   Integrated thinking for photovoltaics in buildings [J].
Ballif, Christophe ;
Perret-Aebi, Laure-Emmanuelle ;
Lufkin, Sophie ;
Rey, Emmanuel .
NATURE ENERGY, 2018, 3 (06) :438-442
[3]   RANDOM CLOSE PACKING OF HARD-SPHERES AND DISKS [J].
BERRYMAN, JG .
PHYSICAL REVIEW A, 1983, 27 (02) :1053-1061
[4]   Perovskite Solar Cells with Vivid, Angle-Invariant, and Customizable Inkjet-Printed Colorization for Building-Integrated Photovoltaics [J].
Eggers, Helge ;
Gharibzadeh, Saba ;
Koch, Stefan ;
Schackmar, Fabian ;
Ritzer, David B. ;
Abzieher, Tobias ;
Richards, Bryce S. ;
Erban, Christof ;
Paetzold, Ulrich W. .
SOLAR RRL, 2022, 6 (04)
[5]   Cassowary gloss and a novel form of structural color in birds [J].
Eliason, Chad M. ;
Clarke, Julia A. .
SCIENCE ADVANCES, 2020, 6 (20)
[6]   MULTIPLE LIGHT-SCATTERING FROM CONCENTRATED, INTERACTING SUSPENSIONS [J].
FRADEN, S ;
MARET, G .
PHYSICAL REVIEW LETTERS, 1990, 65 (04) :512-515
[7]   Resonant light transport through Mie modes in photonic glasses [J].
Garcia, P. D. ;
Sapienza, R. ;
Bertolotti, J. ;
Martin, M. D. ;
Blanco, A. ;
Altube, A. ;
Vina, L. ;
Wiersma, D. S. ;
Lopez, C. .
PHYSICAL REVIEW A, 2008, 78 (02)
[8]   Photonic glass:: A novel random material for light [J].
Garcia, Pedro David ;
Sapienza, Riccardo ;
Blanco, Alvaro ;
Lopez, Cefe .
ADVANCED MATERIALS, 2007, 19 (18) :2597-+
[9]   Bioinspired Photonic Pigments from Colloidal Self-Assembly [J].
Goerlitzer, Eric S. A. ;
Taylor, Robin N. Klupp ;
Vogel, Nicolas .
ADVANCED MATERIALS, 2018, 30 (28)
[10]   Theoretical efficiency limits of ideal coloured opaque photovoltaics [J].
Halme, Janne ;
Makinen, Pyry .
ENERGY & ENVIRONMENTAL SCIENCE, 2019, 12 (04) :1274-1285