Coupling effect of cementitious capillary crystalline waterproof material and exposure environments on self-healing properties of engineered cementitious composites (ECC)

被引:14
作者
Zhang, Chenchen [1 ,2 ,3 ]
Guan, Xinchun [1 ,2 ,3 ]
Li, Jinglu [1 ,2 ,3 ]
Li, Yazhao [1 ,2 ,3 ]
Lu, Rongwei [1 ,2 ,3 ]
机构
[1] Harbin Inst Technol, Minist Ind & Informat Technol, Key Lab Smart Prevent & Mitigat Civil Engn Disaste, Harbin 150090, Peoples R China
[2] Harbin Inst Technol, Minist Educ, Key Lab Struct Dynam Behav & Control, Harbin 150090, Peoples R China
[3] Harbin Inst Technol, Sch Civil Engn, Harbin 150090, Peoples R China
来源
JOURNAL OF BUILDING ENGINEERING | 2023年 / 63卷
基金
中国国家自然科学基金;
关键词
Cementitious capillary crystalline waterproof  material (CCCW); Exposure environments; Self-healing properties; Engineered cementitious composites (ECC); STEADY-STATE; BEHAVIOR; CRACKING; PERMEABILITY;
D O I
10.1016/j.jobe.2022.105471
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Due to the healing mechanism of self-healing technologies, there are some limitations and challenges for application in concrete structures. Based on the characteristics of cementitious capillary crystalline waterproof material (CCCW) in powder and active materials moving along cracks, this work presents CCCW as a direct internally mixed self-healing material, and quanti-tatively explored the coupling effect of CCCW and exposure environments on the self-healing properties of engineered cementitious composites (ECC). Four types of ECC mixtures with CCCW doping of 0%, 1.5%, 3% and 4.5% were prepared. Exposure environments contained water, air and saturated calcium hydroxide solution. The self-healing behavior of ECC was evaluated by the recovery of mechanical properties, water impermeability and closure behavior of crack. Microscopic analysis of healing products was performed by scanning electron micro-scope (SEM), thermogravimetric analysis (TG) and X-ray diffraction (XRD). The test results showed that the recovery of mechanical properties and water impermeability of ECC was improved by directly adding CCCW. The percentage of re-opened healed cracks number in specimen EC45 with 4.5% CCCW content was 83.33% lower than that in specimen EC0 without CCCW. The normalized closure rate of crack area was raised by 167.98% by mixing 4.5% of CCCW in saturated calcium hydroxide solution, compared with that without CCCW. While it was enhanced by 132.44% in water. There was a superimposed enhancement of CCCW and calcium hydroxide solution. Microscopic analysis of healing products showed that CCCW facilitated the production of healing products, especially in saturated calcium hydroxide solution. Finally, the additive effect coefficient Ki was introduced to quantitatively characterize the coupling effect of environments and CCCW on the self-healing properties of ECC.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Effect of healing products on the self-healing performance of cementitious materials with crystalline admixtures
    Park, Byoungsun
    Choi, Young Cheol
    CONSTRUCTION AND BUILDING MATERIALS, 2021, 270
  • [22] Analysis of Crack Microstructure, Self-Healing Products, and Degree of Self-Healing in Engineered Cementitious Composites
    Zhu, Yu
    Zhang, Zhao Cai
    Yao, Yan
    Guan, Xue Mao
    Yang, Ying Zi
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2016, 28 (06)
  • [23] Material processing, microstructure, and composite properties of low carbon Engineered Cementitious Composites (ECC)
    Hou, Mengjun
    Zhang, Duo
    Li, Victor C.
    CEMENT & CONCRETE COMPOSITES, 2022, 134
  • [24] Self-healing capability of engineered cementitious composites with calcium aluminate cement
    Zokaei, Shahin
    Siad, Hocine
    Lachemi, Mohamed
    Mahmoodi, Obaid
    Sahmaran, Mustafa
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 403
  • [25] Effect of Temperatures and Moisture Content on the Fracture Properties of Engineered Cementitious Composites (ECC)
    Gao, Shuling
    Xie, Puxu
    MATERIALS, 2022, 15 (07)
  • [26] Self-healing capability of cementitious composites incorporating different supplementary cementitious materials
    Sahmaran, Mustafa
    Yildirim, Gurkan
    Erdem, Tahir K.
    CEMENT & CONCRETE COMPOSITES, 2013, 35 (01) : 89 - 101
  • [27] Effect of self-healing of cracks in chloride ion diffusion and corrosion of engineered cementitious composites
    Alemu, Abel Shiferaw
    Liyew, Gebremicael
    Lee, Bang Yeon
    Kim, Hyeong-Ki
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2025, 35 : 1054 - 1071
  • [28] Effect of fineness and calcium content of fly ash on the mechanical properties of Engineered Cementitious Composites (ECC)
    Kan, Li-li
    Shi, Ruo-xin
    Zhu, Jin
    CONSTRUCTION AND BUILDING MATERIALS, 2019, 209 : 476 - 484
  • [29] Self-Healing Capability of Fibre Reinforced Cementitious Composites
    Homma, Daisuke
    Mihashi, Hirozo
    Nishiwaki, Tomoya
    JOURNAL OF ADVANCED CONCRETE TECHNOLOGY, 2009, 7 (02) : 217 - 228
  • [30] Activated chemicals of cementitious capillary crystalline waterproofing materials and their self-healing behaviour
    Li, Guangyan
    Huang, Xiaofeng
    Lin, Jiesheng
    Jiang, Xiang
    Zhang, Xinya
    CONSTRUCTION AND BUILDING MATERIALS, 2019, 200 : 36 - 45