共 50 条
Experimental Spectroscopic, Quantum Chemical, Molecular Docking, and Molecular Dynamic Simulation Studies on Hydantoin (Monomer and Dimer)
被引:3
作者:
Sharma, Shikha
[1
]
Fatima, Aysha
[2
]
Manhas, Farah Manzer
[3
]
Agarwal, Neha
[1
]
Singh, Meenakshi
[1
]
Muthu, S.
[4
]
Siddiqui, Nazia
[5
]
Javed, Saleem
[1
]
机构:
[1] Cent Univ Allahabad, Dept Chem, Prayagraj 211002, Uttar Pradesh, India
[2] Jiwaji Univ, SOS Chem, Gwalior, Madhya Pradesh, India
[3] Shoolini Univ, Dept Chem, Solan, Himachal Prades, India
[4] Aringnar Anna Govt Arts Coll, Dept Phys, Cheyyar, Tamil Nadu, India
[5] Dayalbagh Educ Inst Agra, Dept Chem, Agra 282005, Uttar Pradesh, India
关键词:
DFT;
VEDA;
Hirshfeld surface;
molecular docking;
molecular dynamic simulation;
SET MODEL CHEMISTRY;
HIRSHFELD SURFACE;
TOTAL ENERGIES;
X-RAY;
ACID;
DFT;
SYSTEMS;
MATRIX;
ATOMS;
STATE;
D O I:
10.1080/10406638.2022.2123540
中图分类号:
O62 [有机化学];
学科分类号:
070303 ;
081704 ;
摘要:
The quantum chemical properties of hydantoin (imidazolidine-2,4-dione) have been studied by the DFT method (density functional theory) and experimentally by FT-IR, UV-Vis, 1H, and 13 C NMR. The B3LYP technique is used to determine HOMO-LUMO, vibrational frequency, and other parameters as well as to optimize the structure. Along with that vibrational mode assessment, the estimated vibrational frequencies were compared to experimental FT-IR spectra. MEP (molecular electrostatic potential) analysis and a Fukui function analysis were both done to look into the reactive regions of the molecule in order to look into the charge distribution of the molecule. Additionally, the electron localization function (ELF) value was examined to reveal details about the chemical composition, molecular bonding, and reactivity. The calculation of UV-visible spectra using the TD-DFT/PCM approach is done, and the results are contrasted with UV spectra that have been calculated experimentally. From HOMO to LUMO orbitals, electron excitation analysis was carried out. Hole and Electron density distribution (EDD and HDD) maps were created in an excited state using various solvents. The intermolecular interactions on the crystal surface were described and evaluated using fingerprint plots and Hirshfeld surface analyses. The Hirshfeld surface was used to identify different kinds of intermolecular interactions, including N-C, N-H, N-O, O-C, and O-H. The 1H-NMR and 13 C-NMR shifts were calculated using the GIAO method, and the results were compared to experimental spectra. In a biological investigation utilizing several receptors, molecular docking was employed to identify the most effective ligand-protein interactions. The stability of biomolecular systems was investigated using a molecular dynamics simulation.
引用
收藏
页码:6627 / 6653
页数:27
相关论文
共 50 条