Consistent Bayesian information criterion based on a mixture prior for possibly high-dimensional multivariate linear regression models

被引:2
作者
Kono, Haruki [1 ]
Kubokawa, Tatsuya [2 ]
机构
[1] MIT, Dept Econ, Cambridge, MA 02139 USA
[2] Univ Tokyo, Dept Econ, Tokyo, Japan
基金
日本学术振兴会;
关键词
consistency; high-dimensional data; information criterion; mixture distribution; multivariate linear regression; variable selection; SELECTION; WISHART;
D O I
10.1111/sjos.12617
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In the problem of selecting variables in a multivariate linear regression model, we derive new Bayesian information criteria based on a prior mixing a smooth distribution and a delta distribution. Each of them can be interpreted as a fusion of the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). Inheriting their asymptotic properties, our information criteria are consistent in variable selection in both the large-sample and the high-dimensional asymptotic frameworks. In numerical simulations, variable selection methods based on our information criteria choose the true set of variables with high probability in most cases.
引用
收藏
页码:1022 / 1047
页数:26
相关论文
共 33 条
[11]   Model uncertainty [J].
Clyde, M ;
George, EI .
STATISTICAL SCIENCE, 2004, 19 (01) :81-94
[12]   COMMON RISK-FACTORS IN THE RETURNS ON STOCKS AND BONDS [J].
FAMA, EF ;
FRENCH, KR .
JOURNAL OF FINANCIAL ECONOMICS, 1993, 33 (01) :3-56
[13]   A five-factor asset pricing model [J].
Fama, Eugene F. ;
French, Kenneth R. .
JOURNAL OF FINANCIAL ECONOMICS, 2015, 116 (01) :1-22
[14]   Modified AIC and C-p in multivariate linear regression [J].
Fujikoshi, Y ;
Satoh, K .
BIOMETRIKA, 1997, 84 (03) :707-716
[15]  
Fujikoshi Y, 2005, AM J MATH-S, V25, P221
[16]   Spike and slab variable selection: Frequentist and Bayesian strategies [J].
Ishwaran, H ;
Rao, JS .
ANNALS OF STATISTICS, 2005, 33 (02) :730-773
[17]  
Kawakubo Y, 2018, SANKHYA SER B, V80, P60, DOI 10.1007/s13571-018-0152-7
[18]  
Konishi S, 2008, SPRINGER SER STAT, P1, DOI 10.1007/978-0-387-71887-3
[19]   Multivariate sparse group lasso for the multivariate multiple linear regression with an arbitrary group structure [J].
Li, Yanming ;
Nan, Bin ;
Zhu, Ji .
BIOMETRICS, 2015, 71 (02) :354-363