Learning Discriminated Features Based on Feature Pyramid Networks and Attention for Multi-scale Object Detection

被引:2
作者
Lu, Yunhua [1 ]
Su, Minghui [1 ]
Wang, Yong [1 ]
Liu, Zhi [1 ]
Peng, Tao [1 ]
机构
[1] Chongqing Univ Technol, Sch Artificial Intelligence, Chongqing 400054, Peoples R China
关键词
Object detection; Multi-scale; Feature pyramid; Discriminative learning; Attention mechanism;
D O I
10.1007/s12559-022-10052-0
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
As the research scene in object detection becomes increasingly complex, the extracted feature information needs to be further improved. Many multi-scale feature pyramid network methods have been proposed to improve detection accuracy. However, most of them just follow a simple chain aggregation structure, resulting in not considering the distinction between multi-scale objects. Modern cognitive research presents that human cognitive ability is not a simple image-based matching process. It has an inherent process of information decomposition and reconstruction. Inspired by this theory, a new feature pyramid network model denoted as SuFPN based on discriminative learning is proposed to solve the problem of multi-scale object detection. In SuFPN, the correlation between the underlying location information and the deep feature information is fully considered. Firstly, object features are extracted through top-down path and lateral connection. Then deformable convolution is used to extract object discriminant spatial information. Finally, the attention mechanism is introduced to generate a discriminative feature map with enhanced spatial and channel interdependence, which provides excellent location information for the feature pyramid while considering semantic information. The proposed SuFPN is validated on the PASCAL VOC and COCO datasets. The Average Precision (AP) value reaches 80.0 on the PASCAL VOC dataset, which is 1.7 points higher than the feature pyramid networks (FPN), and 39.2 on the COCO dataset, which is 1.8 points higher than the FPN. The result demonstrates that our SuFPN outperforms other advanced methods in the multi-scale detection precision.
引用
收藏
页码:486 / 495
页数:10
相关论文
共 50 条
  • [21] SAN: Learning Relationship Between Convolutional Features for Multi-scale Object Detection
    Kim, Yonghyun
    Kang, Bong-Nam
    Kim, Daijin
    COMPUTER VISION - ECCV 2018, PT V, 2018, 11209 : 328 - 343
  • [22] Multi-scale oriented object detection in aerial images based on convolutional neural networks with global attention
    Fei, Jingjing
    Wang, Zhicheng
    Yu, Zhaohui
    Gu, Xi
    Wei, Gang
    MIPPR 2019: REMOTE SENSING IMAGE PROCESSING, GEOGRAPHIC INFORMATION SYSTEMS, AND OTHER APPLICATIONS, 2020, 11432
  • [23] Remote Sensing Object Detection Method Based on Attention Mechanism and Multi-scale Feature Fusion
    Liu, Yang
    Xiao, Yewei
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 7155 - 7160
  • [24] Object Detection of Remote Sensing Image Based on Multi-Scale Feature Fusion and Attention Mechanism
    Du, Zuoqiang
    Liang, Yuan
    IEEE ACCESS, 2024, 12 : 8619 - 8632
  • [25] Multi-scale feature fusion with attention mechanism for crowded road object detection
    Wu, Jingtao
    Dai, Guojun
    Zhou, Wenhui
    Zhu, Xudong
    Wang, Zengguan
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2024, 21 (02)
  • [26] Multi-scale feature fusion with attention mechanism for crowded road object detection
    Jingtao Wu
    Guojun Dai
    Wenhui Zhou
    Xudong Zhu
    Zengguan Wang
    Journal of Real-Time Image Processing, 2024, 21
  • [27] Cross-Layer Feature Attention Module for Multi-scale Object Detection
    Zheng, Haotian
    Pang, Cheng
    Lan, Rushi
    ARTIFICIAL INTELLIGENCE AND ROBOTICS, ISAIR 2022, PT II, 2022, 1701 : 202 - 210
  • [28] Residual attention mechanism and weighted feature fusion for multi-scale object detection
    Jie Zhang
    Qiye Qi
    Huanlong Zhang
    Qifan Du
    Fengxian Wang
    Xiaoping Shi
    Multimedia Tools and Applications, 2023, 82 : 40873 - 40889
  • [29] Residual attention mechanism and weighted feature fusion for multi-scale object detection
    Zhang, Jie
    Qi, Qiye
    Zhang, Huanlong
    Du, Qifan
    Wang, Fengxian
    Shi, Xiaoping
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (26) : 40873 - 40889
  • [30] Object Detection Model Based on Multi-Scale Feature Integration
    Liu Wanjun
    Feng, Wang
    Qu Haicheng
    LASER & OPTOELECTRONICS PROGRESS, 2019, 56 (23)