Learning Discriminated Features Based on Feature Pyramid Networks and Attention for Multi-scale Object Detection

被引:2
作者
Lu, Yunhua [1 ]
Su, Minghui [1 ]
Wang, Yong [1 ]
Liu, Zhi [1 ]
Peng, Tao [1 ]
机构
[1] Chongqing Univ Technol, Sch Artificial Intelligence, Chongqing 400054, Peoples R China
关键词
Object detection; Multi-scale; Feature pyramid; Discriminative learning; Attention mechanism;
D O I
10.1007/s12559-022-10052-0
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
As the research scene in object detection becomes increasingly complex, the extracted feature information needs to be further improved. Many multi-scale feature pyramid network methods have been proposed to improve detection accuracy. However, most of them just follow a simple chain aggregation structure, resulting in not considering the distinction between multi-scale objects. Modern cognitive research presents that human cognitive ability is not a simple image-based matching process. It has an inherent process of information decomposition and reconstruction. Inspired by this theory, a new feature pyramid network model denoted as SuFPN based on discriminative learning is proposed to solve the problem of multi-scale object detection. In SuFPN, the correlation between the underlying location information and the deep feature information is fully considered. Firstly, object features are extracted through top-down path and lateral connection. Then deformable convolution is used to extract object discriminant spatial information. Finally, the attention mechanism is introduced to generate a discriminative feature map with enhanced spatial and channel interdependence, which provides excellent location information for the feature pyramid while considering semantic information. The proposed SuFPN is validated on the PASCAL VOC and COCO datasets. The Average Precision (AP) value reaches 80.0 on the PASCAL VOC dataset, which is 1.7 points higher than the feature pyramid networks (FPN), and 39.2 on the COCO dataset, which is 1.8 points higher than the FPN. The result demonstrates that our SuFPN outperforms other advanced methods in the multi-scale detection precision.
引用
收藏
页码:486 / 495
页数:10
相关论文
共 50 条
  • [1] Learning Discriminated Features Based on Feature Pyramid Networks and Attention for Multi-scale Object Detection
    Yunhua Lu
    Minghui Su
    Yong Wang
    Zhi Liu
    Tao Peng
    Cognitive Computation, 2023, 15 : 486 - 495
  • [2] Pyramid attention object detection network with multi-scale feature fusion
    Chen, Xiu
    Li, Yujie
    Nakatoh, Yoshihisa
    COMPUTERS & ELECTRICAL ENGINEERING, 2022, 104
  • [3] Multi-scale redistribution feature pyramid for object detection
    Qian, Huifang
    Guo, Jiahao
    Zhou, Xuan
    AI COMMUNICATIONS, 2022, 35 (01) : 15 - 30
  • [4] Multi-Scale Feature Attention-DEtection TRansformer: Multi-Scale Feature Attention for security check object detection
    Sima, Haifeng
    Chen, Bailiang
    Tang, Chaosheng
    Zhang, Yudong
    Sun, Junding
    IET COMPUTER VISION, 2024, 18 (05) : 613 - 625
  • [5] Multi-Scale Residual Aggregation Feature Pyramid Network for Object Detection
    Wang, Hongyang
    Wang, Tiejun
    ELECTRONICS, 2023, 12 (01)
  • [6] Enhanced SSD with interactive multi-scale attention features for object detection
    Shuren Zhou
    Jia Qiu
    Multimedia Tools and Applications, 2021, 80 : 11539 - 11556
  • [7] Enhanced SSD with interactive multi-scale attention features for object detection
    Zhou, Shuren
    Qiu, Jia
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (08) : 11539 - 11556
  • [8] Object Detection Networks Based on Refined Multi-scale Depth Feature
    Li Y.-Q.
    Gai C.-Y.
    Xiao C.-J.
    Wu C.
    Liu J.-J.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2020, 48 (12): : 2360 - 2366
  • [9] Decoupled Feature Pyramid Learning for Multi-Scale Object Detection in Low-Altitude Remote Sensing Images
    Sun, Haokai
    Chen, Yaxiong
    Lu, Xiongbo
    Xiong, Shengwu
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 6556 - 6567
  • [10] Concise feature pyramid region proposal network for multi-scale object detection
    Baofu Fang
    Lu Fang
    The Journal of Supercomputing, 2020, 76 : 3327 - 3337