High current CO2 reduction realized by edge/defect-rich bismuth nanosheets

被引:17
|
作者
Xu, Jiaqi [1 ]
Yang, Siheng [1 ]
Ji, Li [2 ]
Mao, Jiawei [3 ]
Zhang, Wei [1 ]
Zheng, Xueli [1 ]
Fu, Haiyan [1 ]
Yuan, Maolin [1 ]
Yang, Chengkai [4 ]
Chen, Hua [1 ]
Li, Ruixiang [1 ]
机构
[1] Sichuan Univ, Coll Chem, Key Lab Green Chem & Technol, Minist Educ, Chengdu 610064, Peoples R China
[2] Sichuan Res Inst Chem Qual & Safety Testing, Chengdu 610031, Peoples R China
[3] Sichuan Inst Prod Qual Supervis & Inspect, Chengdu 610100, Peoples R China
[4] Fuzhou Univ, Coll Mat Sci & Engn, Key Lab Adv Mat Technol, Fuzhou 350108, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
CO2; electroreduction; defect engineering; bismuth nanosheet; topotactic transformation; CARBON-DIOXIDE; FORMIC-ACID; ELECTROREDUCTION; HYDROGEN; MOS2; EVOLUTION; TRANSFORMATION; CATALYSIS; SITES;
D O I
10.1007/s12274-022-4770-z
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
CO2 electroreduction has been regarded as an appealing strategy for renewable energy storage. Recently, bismuth (Bi) electrocatalysts have attracted much attention due to their excellent formate selectivity. However, many reported Bi electrocatalysts suffer from low current densities, which are insufficient for industrial applications. To reach the goal of high current CO2 reduction to formate, we fabricate Bi nanosheets (NS) with high activity through edge/terrace control and defect engineering strategy. Bi NS with preferential exposure sites are obtained by topotactic transformation, and the processes are clearly monitored by in-situ Raman and ex-situ X-ray diffraction (XRD). Bi NS-1 with a high fraction of edge sites and defect sites exhibits excellent performance, and the current density is up to ca. 870 mA.cm(-2) in the flow cell, far above the industrially applicable level (100 mA.cm(-2)), with a formate Faradaic efficiency greater than 90%. In-situ Fourier transform infrared (FT-IR) spectra detect (OCHO)-O-star, and theoretical calculations reveal that the formation energy of *OCHO on edges is lower than that on terraces, while the defects on edges further reduce the free energy changes (Delta G). The differential charge density spatial distributions reveal that the presence of defects on edges causes charge enrichment around the C-H bond, benefiting the stabilization of the *OCHO intermediate, thus remarkably lowering the Delta G.
引用
收藏
页码:53 / 61
页数:9
相关论文
共 50 条
  • [31] Oxygen vacancy-rich CeOx-Bi2O2CO3 nanosheets for enhancing electrocatalytic reduction of CO2 to formate
    He, Ao
    Wang, Chen
    Zhang, Nianbo
    Wen, Zunqing
    Ma, Yunqian
    Yan, Guihuan
    Xue, Rong
    APPLIED SURFACE SCIENCE, 2023, 638
  • [32] Ultrathin bismuth nanosheets from in situ topotactic transformation for selective electrocatalytic CO2 reduction to formate
    Han, Na
    Wang, Yu
    Yang, Hui
    Deng, Jun
    Wu, Jinghua
    Li, Yafei
    Li, Yanguang
    NATURE COMMUNICATIONS, 2018, 9
  • [33] Electrochemical Transformation of Facet-Controlled BiOI into Mesoporous Bismuth Nanosheets for Selective Electrocatalytic Reduction of CO2 to Formic Acid
    Wu, Dan
    Liu, Jianwen
    Liang, Yue
    Xiang, Kun
    Fu, Xian-Zhu
    Luo, Jing-Li
    CHEMSUSCHEM, 2019, 12 (20) : 4700 - 4707
  • [34] Sulfur boosting CO2 reduction activity of bismuth subcarbonate nanosheets via promoting proton-coupled electron transfer
    Wang, Jing
    Mao, Jiating
    Zheng, Xiaoli
    Zhou, Yannan
    Xu, Qun
    APPLIED SURFACE SCIENCE, 2021, 562
  • [35] Formation of bismuth nanosheets on copper foam coupled with nanobubble technology for enhanced electrocatalytic CO2 reduction
    Wu, Kai
    Yang, Pengwei
    Fan, Shuaijun
    Wu, Yifan
    Ma, Jingxiang
    Yang, Lijuan
    Zhu, Hongtao
    Ma, Xiaoying
    Gao, Heli
    Chen, Wentong
    Jia, Jun
    Ma, Shuangchen
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (48) : 33972 - 33983
  • [36] Evolution of bismuth oxide catalysts during electrochemical CO2 reduction
    Wissink, Tim
    Man, Alex J. W.
    Chen, Wei
    Heinrichs, Jason M. J. J.
    van de Poll, Rim C. J.
    Figueiredo, Marta C.
    Hensen, Emiel J. M.
    JOURNAL OF CO2 UTILIZATION, 2023, 77
  • [37] Defect chemistry of electrocatalysts for CO2 reduction
    Li, Hongqiang
    Li, Ran
    Niu, Jiabao
    Gan, Kaining
    He, Xiaojun
    FRONTIERS IN CHEMISTRY, 2022, 10
  • [38] Directing the Outcome of CO2 Reduction at Bismuth Cathodes Using Varied Ionic Liquid Promoters
    Atifi, Abderrahman
    Boyce, David W.
    DiMeglio, John L.
    Rosenthal, Joel
    ACS CATALYSIS, 2018, 8 (04): : 2857 - 2863
  • [39] CO2 reduction to formate on an affordable bismuth metal-organic framework based catalyst
    Avila-Bolivar, Beatriz
    Cepitis, Ritums
    Alam, Mahboob
    Assafrei, Juergen-Martin
    Ping, Kefeng
    Aruvali, Jaan
    Kikas, Arvo
    Kisand, Vambola
    Vlassov, Sergei
    Kaarik, Maike
    Leis, Jaan
    Ivaniststev, Vladislav
    Starkov, Pavel
    Montiel, Vicente
    Solla-Gullon, Jose
    Kongi, Nadezda
    JOURNAL OF CO2 UTILIZATION, 2022, 59
  • [40] Criteria and cutting-edge catalysts for CO2 electrochemical reduction at the industrial scale
    Al Harthi, Asma
    Al Abri, Mohammed
    Younus, Hussein A.
    Al Hajri, Rashid
    JOURNAL OF CO2 UTILIZATION, 2024, 83