Discrete breathers in Klein-Gordon lattices: A deflation-based approach

被引:0
作者
Martin-Vergara, F. [1 ]
Cuevas-Maraver, J. [2 ,3 ]
Farrell, P. E. [4 ]
Villatoro, F. R. [5 ]
Kevrekidis, P. G. [6 ]
机构
[1] Univ Malaga, Area Basica Tecnol Informac & Comun, Serv Sistemas Informat, Malaga 29071, Spain
[2] Univ Seville, Dept Fis Aplicada 1, Escuela Politecn Super, Grp Fis Lineal, C Virgen Africa 7, Seville 41011, Spain
[3] Inst Matemat Univ Sevilla IMUS, Edificio Celestino Mutis,Avda Reina Mercedes S-N, Seville 41012, Spain
[4] Univ Oxford, Math Inst, Oxford OX2 6GG, England
[5] Univ Malaga, Dept Lenguajes & Ciencias Computac, Escuela Ingenierias Ind, Malaga 29071, Spain
[6] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
基金
英国工程与自然科学研究理事会; 美国国家科学基金会;
关键词
STABILITY; DYNAMICS; ENERGY; MULTIBREATHERS; LOCALIZATION; RESONANCES; EXISTENCE; EQUATION; MODES;
D O I
10.1063/5.0161889
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Deflation is an efficient numerical technique for identifying new branches of steady state solutions to nonlinear partial differential equations. Here, we demonstrate how to extend deflation to discover new periodic orbits in nonlinear dynamical lattices. We employ our extension to identify discrete breathers, which are generic exponentially localized, time-periodic solutions of such lattices. We compare different approaches to using deflation for periodic orbits, including ones based on Fourier decomposition of the solution, as well as ones based on the solution's energy density profile. We demonstrate the ability of the method to obtain a wide variety of multibreather solutions without prior knowledge about their spatial profile.
引用
收藏
页数:13
相关论文
共 34 条