Harnessing the power of proteomics in precision diabetes medicine

被引:7
作者
Kurgan, Nigel [1 ]
Larsen, Jeppe Kjaergaard [1 ]
Deshmukh, Atul S. [1 ]
机构
[1] Univ Copenhagen, Novo Nord Fdn Ctr Basic Metab Res, Copenhagen, Denmark
关键词
Affinity proteomics; Diabetes; LC-MS/MS; Precision medicine; Proteogenomics; Proteomics; Review; PERSONALIZED MEDICINE; PLASMA PROTEOME; TYPE-2; SUBGROUPS; PROTEINS; GENETICS; INSULIN; RISK; METABOLOMICS; HEALTH;
D O I
10.1007/s00125-024-06097-5
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Precision diabetes medicine (PDM) aims to reduce errors in prevention programmes, diagnosis thresholds, prognosis prediction and treatment strategies. However, its advancement and implementation are difficult due to the heterogeneity of complex molecular processes and environmental exposures that influence an individual's disease trajectory. To address this challenge, it is imperative to develop robust screening methods for all areas of PDM. Innovative proteomic technologies, alongside genomics, have proven effective in precision cancer medicine and are showing promise in diabetes research for potential translation. This narrative review highlights how proteomics is well-positioned to help improve PDM. Specifically, a critical assessment of widely adopted affinity-based proteomic technologies in large-scale clinical studies and evidence of the benefits and feasibility of using MS-based plasma proteomics is presented. We also present a case for the use of proteomics to identify predictive protein panels for type 2 diabetes subtyping and the development of clinical prediction models for prevention, diagnosis, prognosis and treatment strategies. Lastly, we discuss the importance of plasma and tissue proteomics and its integration with genomics (proteogenomics) for identifying unique type 2 diabetes intra- and inter-subtype aetiology. We conclude with a call for action formed on advancing proteomics technologies, benchmarking their performance and standardisation across sites, with an emphasis on data sharing and the inclusion of diverse ancestries in large cohort studies. These efforts should foster collaboration with key stakeholders and align with ongoing academic programmes such as the Precision Medicine in Diabetes Initiative consortium.
引用
收藏
页码:783 / 797
页数:15
相关论文
共 147 条
[71]   Proteomic profiling platforms head to head: Leveraging genetics and clinical traits to compare aptamer- and antibody-based methods [J].
Katz, Daniel H. ;
Robbins, Jeremy M. ;
Deng, Shuliang ;
Tahir, Usman A. ;
Bick, Alexander G. ;
Pampana, Akhil ;
Yu, Zhi ;
Ngo, Debby ;
Benson, Mark D. ;
Chen, Zsu-Zsu ;
Cruz, Daniel E. ;
Shen, Dongxiao ;
Gao, Yan ;
Bouchard, Claude ;
Sarzynski, Mark A. ;
Correa, Adolfo ;
Natarajan, Pradeep ;
Wilson, James G. ;
Gerszten, Robert E. .
SCIENCE ADVANCES, 2022, 8 (33)
[72]   A draft map of the human proteome [J].
Kim, Min-Sik ;
Pinto, Sneha M. ;
Getnet, Derese ;
Nirujogi, Raja Sekhar ;
Manda, Srikanth S. ;
Chaerkady, Raghothama ;
Madugundu, Anil K. ;
Kelkar, Dhanashree S. ;
Isserlin, Ruth ;
Jain, Shobhit ;
Thomas, Joji K. ;
Muthusamy, Babylakshmi ;
Leal-Rojas, Pamela ;
Kumar, Praveen ;
Sahasrabuddhe, Nandini A. ;
Balakrishnan, Lavanya ;
Advani, Jayshree ;
George, Bijesh ;
Renuse, Santosh ;
Selvan, Lakshmi Dhevi N. ;
Patil, Arun H. ;
Nanjappa, Vishalakshi ;
Radhakrishnan, Aneesha ;
Prasad, Samarjeet ;
Subbannayya, Tejaswini ;
Raju, Rajesh ;
Kumar, Manish ;
Sreenivasamurthy, Sreelakshmi K. ;
Marimuthu, Arivusudar ;
Sathe, Gajanan J. ;
Chavan, Sandip ;
Datta, Keshava K. ;
Subbannayya, Yashwanth ;
Sahu, Apeksha ;
Yelamanchi, Soujanya D. ;
Jayaram, Savita ;
Rajagopalan, Pavithra ;
Sharma, Jyoti ;
Murthy, Krishna R. ;
Syed, Nazia ;
Goel, Renu ;
Khan, Aafaque A. ;
Ahmad, Sartaj ;
Dey, Gourav ;
Mudgal, Keshav ;
Chatterjee, Aditi ;
Huang, Tai-Chung ;
Zhong, Jun ;
Wu, Xinyan ;
Shaw, Patrick G. .
NATURE, 2014, 509 (7502) :575-+
[73]   A Protein Profile of Visceral Adipose Tissues Linked to Early Pathogenesis of Type 2 Diabetes Mellitus [J].
Kim, Su-Jin ;
Chae, Sehyun ;
Kim, Hokeun ;
Mun, Dong-Gi ;
Back, Seunghoon ;
Choi, Hye Yeon ;
Park, Kyong Soo ;
Hwang, Daehee ;
Choi, Sung Hee ;
Lee, Sang-Won .
MOLECULAR & CELLULAR PROTEOMICS, 2014, 13 (03) :811-822
[74]   Mendelian randomization: Using genes as instruments for making causal inferences in epidemiology [J].
Lawlor, Debbie A. ;
Harbord, Roger M. ;
Sterne, Jonathan A. C. ;
Timpson, Nic ;
Smith, George Davey .
STATISTICS IN MEDICINE, 2008, 27 (08) :1133-1163
[75]   Validation of the Swedish Diabetes Re-Grouping Scheme in Adult-Onset Diabetes in China [J].
Li, Xia ;
Yang, Shuting ;
Cao, Chuqing ;
Yan, Xiang ;
Zheng, Lei ;
Zheng, Lanbo ;
Da, Jiarui ;
Tang, Xiaohan ;
Ji, Linong ;
Yang, Xilin ;
Zhou, Zhiguang .
JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM, 2020, 105 (10) :1-10
[76]   RNA splicing is a primary link between genetic variation and disease [J].
Li, Yang I. ;
van de Geijn, Bryce ;
Raj, Anil ;
Knowles, David A. ;
Petti, Allegra A. ;
Golan, David ;
Gilad, Yoav ;
Pritchard, Jonathan K. .
SCIENCE, 2016, 352 (6285) :600-604
[77]   Benchmarking commonly used software suites and analysis workflows for DIA proteomics and phosphoproteomics [J].
Lou, Ronghui ;
Cao, Ye ;
Li, Shanshan ;
Lang, Xiaoyu ;
Li, Yunxia ;
Zhang, Yaoyang ;
Shui, Wenqing .
NATURE COMMUNICATIONS, 2023, 14 (01)
[78]   Homogeneous antibody-based proximity extension assays provide sensitive and specific detection of low-abundant proteins in human blood [J].
Lundberg, Martin ;
Eriksson, Anna ;
Tran, Bonnie ;
Assarsson, Erika ;
Fredriksson, Simon .
NUCLEIC ACIDS RESEARCH, 2011, 39 (15) :e102
[79]   Associations of plasma proteomics with type 2 diabetes and related traits: results from the longitudinal KORA S4/F4/FF4 Study [J].
Luo, Hong ;
Bauer, Alina ;
Nano, Jana ;
Petrera, Agnese ;
Rathmann, Wolfgang ;
Herder, Christian ;
Hauck, Stefanie M. ;
Sun, Benjamin B. ;
Hoyer, Annika ;
Peters, Annette ;
Thorand, Barbara .
DIABETOLOGIA, 2023, 66 (09) :1655-1668
[80]   Sampling the proteome by emerging single-molecule and mass spectrometry methods [J].
MacCoss, Michael J. J. ;
Alfaro, Javier Antonio ;
Faivre, Danielle A. A. ;
Wu, Christine C. C. ;
Wanunu, Meni ;
Slavov, Nikolai .
NATURE METHODS, 2023, 20 (03) :339-346