Improved image quality in CT pulmonary angiography using deep learning-based image reconstruction

被引:9
作者
Klemenz, Ann-Christin [1 ]
Albrecht, Lasse [1 ]
Manzke, Mathias [1 ]
Dalmer, Antonia [1 ]
Boettcher, Benjamin [1 ]
Surov, Alexey [2 ]
Weber, Marc-Andre [1 ]
Meinel, Felix G. [1 ]
机构
[1] Univ Med Ctr Rostock, Inst Diagnost & Intervent Radiol Pediat Radiol & N, Schillingallee 36, D-18057 Rostock, Germany
[2] Ruhr Univ Bochum, Dept Radiol, Muhlenkreiskliniken Minden, Bochum, Germany
关键词
ITERATIVE RECONSTRUCTION; COMPUTED-TOMOGRAPHY; VENOUS THROMBOEMBOLISM; EMBOLISM; RISKS;
D O I
10.1038/s41598-024-52517-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We investigated the effect of deep learning-based image reconstruction (DLIR) compared to iterative reconstruction on image quality in CT pulmonary angiography (CTPA) for suspected pulmonary embolism (PE). For 220 patients with suspected PE, CTPA studies were reconstructed using filtered back projection (FBP), adaptive statistical iterative reconstruction (ASiR-V 30%, 60% and 90%) and DLIR (low, medium and high strength). Contrast-to-noise ratio (CNR) served as the primary parameter of objective image quality. Subgroup analyses were performed for normal weight, overweight and obese individuals. For patients with confirmed PE (n = 40), we further measured PE-specific CNR. Subjective image quality was assessed independently by two experienced radiologists. CNR was lowest for FBP and enhanced with increasing levels of ASiR-V and, even more with increasing strength of DLIR. High strength DLIR resulted in an additional improvement in CNR by 29-67% compared to ASiR-V 90% (p < 0.05). PE-specific CNR increased by 75% compared to ASiR-V 90% (p < 0.05). Subjective image quality was significantly higher for medium and high strength DLIR compared to all other image reconstructions (p < 0.05). In CT pulmonary angiography, DLIR significantly outperforms iterative reconstruction for increasing objective and subjective image quality. This may allow for further reductions in radiation exposure in suspected PE.
引用
收藏
页数:11
相关论文
共 33 条
[1]   Deep Learning CT Image Reconstruction in Clinical Practice [J].
Arndt, Clemens ;
Guettler, Felix ;
Heinrich, Andreas ;
Buerckenmeyer, Florian ;
Diamantis, Ioannis ;
Teichgraeber, Ulf .
ROFO-FORTSCHRITTE AUF DEM GEBIET DER RONTGENSTRAHLEN UND DER BILDGEBENDEN VERFAHREN, 2021, 193 (03) :252-261
[2]   Current concepts - Computed tomography - An increasing source of radiation exposure [J].
Brenner, David J. ;
Hall, Eric J. .
NEW ENGLAND JOURNAL OF MEDICINE, 2007, 357 (22) :2277-2284
[3]   Deep Learning Image Reconstruction Algorithm for CCTA: Image Quality Assessment and Clinical Application [J].
Catapano, Federica ;
Lisi, Costanza ;
Savini, Giovanni ;
Olivieri, Marzia ;
Figliozzi, Stefano ;
Caracciolo, Alessandra ;
Monti, Lorenzo ;
Francone, Marco .
JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, 2024, 48 (02) :217-221
[4]   Venous thromboembolism (VTE) in Europe - The number of VTE events and associated morbidity and mortality [J].
Cohen, Alexander T. ;
Agnelli, Giancarlo ;
Anderson, Frederick A. ;
Arcelus, Juan I. ;
Bergqvist, David ;
Brecht, Josef G. ;
Greer, Ian A. ;
Heit, John A. ;
Hutchinson, Julia L. ;
Kakkar, Ajay K. ;
Mottier, Dominique ;
Oger, Emmanuel ;
Samama, Meyer-Michel ;
Spannagl, Michael .
THROMBOSIS AND HAEMOSTASIS, 2007, 98 (04) :756-764
[5]   Deep learning image reconstruction algorithm: impact on image quality in coronary computed tomography angiography [J].
De Santis, Domenico ;
Polidori, Tiziano ;
Tremamunno, Giuseppe ;
Rucci, Carlotta ;
Piccinni, Giulia ;
Zerunian, Marta ;
Pugliese, Luca ;
Del Gaudio, Antonella ;
Guido, Gisella ;
Barbato, Luca ;
Laghi, Andrea ;
Caruso, Damiano .
RADIOLOGIA MEDICA, 2023, 128 (04) :434-444
[6]   The role of computed tomography in the diagnosis of acute and chronic pulmonary embolism [J].
Dogan, Halil ;
de Roos, Albert ;
Geleijins, Jacob ;
Huisman, Menno ;
Kroft, Lucia .
DIAGNOSTIC AND INTERVENTIONAL RADIOLOGY, 2015, 21 (04) :307-316
[7]   State of the Art: Iterative CT Reconstruction Techniques [J].
Geyer, Lucas L. ;
Schoepf, U. Joseph ;
Meinel, Felix G. ;
Nance, John W., Jr. ;
Bastarrika, Gorka ;
Leipsic, Jonathon A. ;
Paul, Narinder S. ;
Rengo, Marco ;
Laghi, Andrea ;
De Cecco, Carlo N. .
RADIOLOGY, 2015, 276 (02) :338-356
[8]   Artificial Intelligence Iterative Reconstruction in Computed Tomography Angiography: An Evaluation on Pulmonary Arteries and Aorta With Routine Dose Settings [J].
Gong, Huan ;
Peng, Liying ;
Du, Xiangdong ;
An, Jiajia ;
Peng, Rui ;
Guo, Rui ;
Ma, Xu ;
Xiong, Sining ;
Ma, Qin ;
Zhang, Guozhi ;
Ma, Jing .
JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, 2024, 48 (02) :244-250
[9]   Cancer risks from diagnostic radiology [J].
Hall, E. J. ;
Brenner, D. J. .
BRITISH JOURNAL OF RADIOLOGY, 2008, 81 (965) :362-378
[10]   Combination of Deep Learning-Based Denoising and Iterative Reconstruction for Ultra-Low-Dose CT of the Chest: Image Quality and Lung-RADS Evaluation [J].
Hata, Akinori ;
Yanagawa, Masahiro ;
Yoshida, Yuriko ;
Miyata, Tomo ;
Tsubamoto, Mitsuko ;
Honda, Osamu ;
Tomiyama, Noriyuki .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2020, 215 (06) :1321-1328