Organic Passivation of Deep Defects in Cu(In,Ga)Se2 Film for Geometry-Simplified Compound Solar Cells

被引:6
作者
Chen, Jingwei [1 ]
Chang, Xuan [1 ]
Guo, Jianxin [1 ]
Gao, Qing [1 ]
Zhang, Xuning [1 ]
Liu, Chenxu [1 ]
Yang, Xueliang [1 ]
Zhou, Xin [1 ]
Chen, Bingbing [1 ]
Li, Feng [2 ]
Wang, Jianming [3 ]
Yan, Xiaobing [1 ]
Song, Dengyuan [3 ]
Li, Han [4 ]
Flavel, Benjamin S.
Wang, Shufang [1 ,4 ]
Chen, Jianhui [1 ]
机构
[1] Hebei Univ, Coll Phys Sci & Technol, Adv Passivat Technol Lab, Baoding 071002, Peoples R China
[2] Yingli Green Energy Holding Co Ltd, State Key Lab Photovolta Mat & Technol, Baoding 071051, Peoples R China
[3] Das Solar Co Ltd, 43 Bailing South Rd,Quzhou Green Ind Clustering Z, Quzhou 324022, Zhejiang, Peoples R China
[4] Karlsruhe Inst Technol, Inst Nanotechnol, Hermann Helmholtz Pl 1, Eggenstein Leopoldshafen, Germany
基金
中国国家自然科学基金;
关键词
RECOMBINATION; INTERFACE; IMPACT;
D O I
10.34133/research.0084
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Diverse defects in copper indium gallium diselenide solar cells cause nonradiative recombination losses and impair device performance. Here, an organic passivation scheme for surface and grain boundary defects is reported, which employs an organic passivation agent to infiltrate the copper indium gallium diselenide thin films. A transparent conductive passivating (TCP) film is then developed by incorporating metal nanowires into the organic polymer and used in solar cells. The TCP films have a transmittance of more than 90% in the visible and nearinfrared spectra and a sheet resistance of similar to 10.5 ohm/sq. This leads to improvements in the open-circuit voltage and the efficiency of the organic passivated solar cells compared with control cells and paves the way for novel approaches to copper indium gallium diselenide defect passivation and possibly other compound solar cells.
引用
收藏
页数:11
相关论文
empty
未找到相关数据