Ti3C2Tx/SnO2 P-N heterostructure construction boosts room-temperature detecting formaldehyde

被引:19
|
作者
Zhang, Yue [1 ]
Wang, Ming-Yue [2 ]
San, Xiao-Guang [1 ]
Shen, Yan-Bai [3 ]
Wang, Guo-Sheng [1 ]
Zhang, Lei [1 ]
Meng, Dan [1 ]
机构
[1] Shenyang Univ Chem Technol, Coll Chem Engn, Shenyang 110142, Peoples R China
[2] Univ Wollongong, Inst Superconducting & Elect Mat ISEM, Australian Inst Innovat Mat AIIM, Wollongong, NSW 2500, Australia
[3] Northeastern Univ, Coll Resources & Civil Engn, Shenyang 110819, Peoples R China
基金
中国国家自然科学基金;
关键词
Ti3C2Tx/SnO2; nanocomposites; p-n heterostructures; Formaldehyde sensing; Room temperature; DFT calculations; GAS SENSORS; CO GAS;
D O I
10.1007/s12598-023-02456-0
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Formaldehyde is a common atmospheric pollutant produced in industrial production and daily life. However, the traditional semiconductor formaldehyde gas sensor cannot work at room temperature, which limits its practical application. Therefore, developing high-performance gas sensors for rapidly and accurately detecting formaldehyde at room temperature is an important topic. In this study, Ti3C2Tx/SnO2 heterostructures were constructed, which could selectively detect formaldehyde at room temperature with a response value of 29.16% (10 x 10(-6)). In addition, the sensor shows a remarkable theoretical detection limit of 5.09 x 10(-9) and good long-term stability. Density functional theory (DFT) simulations reveal that SnO2 nanospheres provide the majority of adsorption sites that strongly interact with formaldehyde. Meanwhile, Ti3C2Tx acting as a conductive layer facilitates the transfer of charge carriers so that they show a sensing response to formaldehyde at room temperature. Moreover, the formation of p-n heterostructures between SnO2 and Ti3C2Tx boosts the Schottky barrier at the interface, which is the critical factor in enhancing the sensing properties by turning the Schottky barrier upon introducing formaldehyde gas. This perspective is expected to provide instructive guidance for utilizing MXene/metal oxide nanocomposites to improve the gas sensing performance at room temperature.
引用
收藏
页码:267 / 279
页数:13
相关论文
共 50 条
  • [31] Synergistic effects in CuO/SnO2/Ti3C2Tx nanohybrids: Unveiling their potential as supercapacitor cathode material
    Ramachandran, Tholkappiyan
    Pachamuthu, M. P.
    Karthikeyan, G.
    Hamed, Fathalla
    Rezeq, Moh'd
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2024, 179
  • [32] Ultrasmall SnO2 nanocrystals sandwiched into polypyrrole and Ti3C2Tx MXene for highly effective sodium storage
    Ding, Jianfeng
    Tang, Cheng
    Zhu, Guanjia
    He, Fengyi
    Du, Aijun
    Wu, Minghong
    Zhang, Haijiao
    MATERIALS CHEMISTRY FRONTIERS, 2021, 5 (02) : 825 - 833
  • [33] Design of Ti3C2Tx/SnO2-Selective Ethanolamine Sensor
    Xu, Xiaoli
    Jiang, Hongtao
    Liu, Wangwang
    Wang, Shengyi
    Wang, Xiaoping
    Wang, Mengyu
    Ma, Wei
    Sun, Guorong
    Liu, Jiming
    ACS APPLIED NANO MATERIALS, 2024, 7 (04) : 4324 - 4335
  • [34] Room-Temperature, Highly Durable Ti3C2Tx MXene/Graphene Hybrid Fibers for NH3 Gas Sensing
    Lee, Sang Hoon
    Eom, Wonsik
    Shin, Hwansoo
    Ambade, Rohan B.
    Bang, Jae Hoon
    Kim, Hyoun Woo
    Han, Tae Hee
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (09) : 10434 - 10442
  • [35] Room-Temperature Ammonia Gas Sensor Based on Ti3C2Tx MXene/Graphene Oxide/CuO/ZnO Nanocomposite
    Seekaew, Yotsarayuth
    Kamlue, Supaporn
    Wongchoosuk, Chatchawal
    ACS APPLIED NANO MATERIALS, 2023, 6 (10) : 9008 - 9020
  • [36] Stable N-doped Ti3C2Tx gas sensors for recoverable detection of ammonia at room temperature
    Ahmadian, Zahra
    Mohammadi, Somayeh
    Mortazavi, Yadollah
    Khodadadi, Abbas Ali
    CERAMICS INTERNATIONAL, 2023, 49 (23) : 38635 - 38643
  • [37] Fabrication of Ti3C2Tx/In2O3 nanocomposites for enhanced ammonia sensing at room temperature
    Zhou, Ming
    Han, Yutong
    Yao, Yu
    Xie, Lili
    Zhao, Xueling
    Wang, Jingrong
    Zhu, Zhigang
    CERAMICS INTERNATIONAL, 2022, 48 (05) : 6600 - 6607
  • [38] Noble metal decorated Ti3C2Tx MXene for room temperature SO2 detection
    Shilpa, M. P.
    Ashadevi, K. S.
    Shetty, Shivakumar Jagadish
    Bhat, Saideep Shirish
    Naresh, Nalajala
    Mishra, Vikash
    Waikar, Maqsood R.
    Sonkawade, Rajendra G.
    Gurumurthy, S. C.
    SENSORS AND ACTUATORS A-PHYSICAL, 2025, 388
  • [39] NiO/Ti3C2Tx MXene nanocomposites sensor for ammonia gas detection at room temperature
    Yang, Jiacheng
    Gui, Yingang
    Wang, Yunfeng
    He, Shasha
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2023, 119 : 476 - 484
  • [40] Room temperature ammonia sensor based on Ag NPs loaded Ti3C2Tx nanocomposites
    Zhao, Zhihua
    Wang, Yao
    Chen, Wei
    Jin, Guixin
    Shi, Qingsheng
    Zhou, Baocang
    Pan, Yafang
    Wu, Lan
    Shao, Zhigang
    SURFACES AND INTERFACES, 2024, 51