3D printed silicon-based micro-lattices with ultrahigh areal/gravimetric capacities and robust structural stability for lithium-ion batteries

被引:9
作者
Fu, Jie [1 ]
Wang, Dong [1 ,2 ]
Li, Yan [1 ]
Liu, Xianzheng [1 ]
Zhang, Rui [1 ]
Liu, Zhiyuan [1 ]
Liu, Pengdong [1 ]
Zhang, Lijuan [1 ]
Li, Xuefei [1 ]
Wen, Guangwu [1 ]
机构
[1] Shandong Univ Technol, Sch Mat Sci & Engn, Zibo 255000, Peoples R China
[2] Shandong Si Nano Mat Technol Co Ltd, Zibo 255000, Peoples R China
基金
中国国家自然科学基金;
关键词
silicon anode; areal capacity; three-dimensional (3D) printing; lithium-ion batteries; HIGH-ENERGY; ANODES; ELECTRODES; SIZE;
D O I
10.1007/s12274-023-6113-0
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nanostructured silicon anodes have shown extraordinary lithium storage properties for lithium-ion batteries (LIBs) but are usually achieved at low areal loadings (< 1.5 mg center dot cm(-2)) with low areal capacity. Sustaining sound electrochemical performance at high loading requires proportionally higher ion/electron currents and robust structural stability in the thicker electrode. Herein, we report a three-dimensional (3D) printed silicon-graphene-carbon nanotube (3D-Si/G/C) electrode for simultaneously achieving ultrahigh areal/gravimetric capacities at high mass loading. The periodically arranged vertical channels and hierarchically porous filaments facilitate sufficient electrolyte infiltration and rapid ion diffusion, and the carbonaceous network provides excellent electron transport properties and mechanical integrity, thus endowing the printed 3D-Si/G/C electrode with fast electrochemical reaction kinetics and reversibility at high mass loading. Consequently, the 3D-Si/G/C with high areal mass loading of 12.9 mg center dot cm(-2) exhibits excellent areal capacity of 12.8 mAh center dot cm(-2) and specific capacity of 1007 mAh center dot g(-1), respectively. In-situ optical microscope and ex-situ scanning electron microscope (SEM) confirm that the hierarchically porous filaments with interconnected carbon skeletons effectively suppress the volume change of silicon and maintain stable micro-lattice architecture. A 3D printed 3D-Si/G/C-1 parallel to 3D-LiFePO4/G full cell holds excellent cyclic stability (capacity retention rate of 78% after 50 cycles) with an initial Coulombic efficiency (ICE) of 96%. This work validates the feasibility of 3D printing on constructing high mass loading silicon anode for practical high energy-density LIBs.
引用
收藏
页码:2693 / 2703
页数:11
相关论文
共 42 条
  • [1] Size and Surface Effects of Silicon Nanocrystals in Graphene Aerogel Composite Anodes for Lithium Ion Batteries
    Aghajamali, Maryam
    Xie, Hezhen
    Javadi, Morteza
    Kalisvaart, W. Peter
    Buriak, Jillian M.
    Veinot, Jonathan G. C.
    [J]. CHEMISTRY OF MATERIALS, 2018, 30 (21) : 7782 - 7792
  • [2] Green, Scalable, and Controllable Fabrication of Nanoporous Silicon from Commercial Alloy Precursors for High-Energy Lithium-Ion Batteries
    An, Yongling
    Fei, Huifang
    Zeng, Guifang
    Ci, Lijie
    Xiong, Shenglin
    Feng, Jinkui
    Qian, Yitai
    [J]. ACS NANO, 2018, 12 (05) : 4993 - 5002
  • [3] 3D Printing of Liquid Crystalline Hydroxypropyl Cellulose-toward Tunable and Sustainable Volumetric Photonic Structures
    Chan, Chun Lam Clement
    Lei, Iek Man
    van de Kerkhof, Gea T.
    Parker, Richard M.
    Richards, Kieran D.
    Evans, Rachel C.
    Huang, Yan Yan Shery
    Vignolini, Silvia
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (15)
  • [4] 1000 Wh L-1 lithium-ion batteries enabled by crosslink-shrunk tough carbon encapsulated silicon microparticle anodes
    Chen, Fanqi
    Han, Junwei
    Kong, Debin
    Yuan, Yifei
    Xiao, Jing
    Wu, Shichao
    Tang, Dai-Ming
    Deng, Yaqian
    Lv, Wei
    Lu, Jun
    Kang, Feiyu
    Yang, Quan-Hong
    [J]. NATIONAL SCIENCE REVIEW, 2021, 8 (09)
  • [5] CHEN Z, 2015, ADV ENERGY MATER, V5, DOI [DOI 10.1002/AENM.201401826, 10.1002/aenm.201401826]
  • [6] Hydroxylated graphene-based flexible carbon film with ultrahigh electrical and thermal conductivity
    Ding, Jiheng
    Rahman, Obaid Ur
    Zhao, Hongran
    Peng, Wanjun
    Dou, Huimin
    Chen, Hao
    Yu, Haibin
    [J]. NANOTECHNOLOGY, 2017, 28 (39)
  • [7] A sandwich-like silicon -carbon composite prepared by surface-polymerization for rapid lithium-ion storage
    Gao, Runsheng
    Tang, Jie
    Zhang, Kun
    Ozawa, Kiyoshi
    Qin, Lu-Chang
    [J]. NANO ENERGY, 2020, 78
  • [8] Porous Doped Silicon Nanowires for Lithium Ion Battery Anode with Long Cycle Life
    Ge, Mingyuan
    Rong, Jiepeng
    Fang, Xin
    Zhou, Chongwu
    [J]. NANO LETTERS, 2012, 12 (05) : 2318 - 2323
  • [9] HE T, 2018, ADV ENERGY MATER, V8
  • [10] Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells
    Kasavajjula, Uday
    Wang, Chunsheng
    Appleby, A. John
    [J]. JOURNAL OF POWER SOURCES, 2007, 163 (02) : 1003 - 1039