A flexible and free-standing silicon-based anode with a rational yolk-shell structure for high-performance lithium-ion batteries

被引:9
|
作者
Zhang, Yao-Wen [1 ]
Li, Xin-Tao [1 ]
Zhang, Yi [1 ]
Liu, Ting-Ting [1 ]
Fan, Ming-Jie [1 ]
Du, Fei-Hu [1 ,2 ]
机构
[1] Shanghai Univ, Sch Environm & Chem Engn, Shanghai 200444, Peoples R China
[2] 99 Shangda Rd, Shanghai 200444, Peoples R China
基金
上海市自然科学基金;
关键词
Lithium-ion batteries; ALD Al 2 O 3 template; Yolk-shell structure; Free-standing Si-based anode; Sodiothermic reduction; LI-ION; CHEMICAL-REDUCTION; AMORPHOUS-SILICON; HIGH-ENERGY; NANOPARTICLES; COMPOSITES; GRAPHENE; STORAGE; NANOSPHERES; DESIGN;
D O I
10.1016/j.jallcom.2023.171831
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Silicon is arousing considerable interest as a potential material for the anode of lithium-ion batteries (LIBs) owing to its proper discharge voltage and outstanding specific capacity. However, the inferior electrical conductivity, enormous volume variation, and slow Li+ propagation kinetics of Si severely hinder its application. Here, a freestanding and flexible silicon/carbon nanofibers composite with a yolk-shell structure (Si@void@CNFs) is designed, which consists of a yolk synthesized by sodiothermic reduction of SiO2 at a comparatively low temperature (450 & DEG;C), a shell generated via electrospinning technique, and a void formed through etching atomic layer deposition (ALD) Al2O3 coating with dilute HCl. The as-prepared Si@void@CNFs anode employed in LIBs displays a large initial discharge capacity of 2828 mAh g- 1 with a perfect Coulombic efficiency of 71 % at 0.2 A g- 1, significantly improved cycle stability retaining a large specific capacity of 952 mAh g- 1 after 200 cycles, and remarkable rate performance (1725, 1567, 1391, 1121, and 719 mAh g- 1 at 0.2, 0.5, 1, 2, and 4 A g-1). The superior electrochemical behaviour of the free-standing Si@void@CNFs is imputed to the cooperative effects of the mechanically robust CNFs shell, the porous silicon yolk, and the rational yolk-shell structure.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Yolk-shell structured Mo/MoO2 composite microspheres function as high-performance anode materials for lithium-ion batteries
    Wang, Wei
    Shi, Gege
    Cai, Haojie
    Zhao, Chaoyue
    Wu, Jialun
    Yu, Youren
    Hu, Jinxing
    Fang, Zhenxing
    Yan, Jiefeng
    Liu, Bing
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 792 : 191 - 202
  • [32] Flexible free-standing Fe-CoP-NAs/CC nanoarrays for high-performance full lithium-ion batteries
    Tan, Wenqi
    Liu, Zhongping
    Wu, Qian
    Yuan, Linying
    Xia, Zijie
    Zhao, Kangning
    Huang, Chen
    Chen, Luyang
    Lu, Shigang
    Wang, Linlin
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2024, 667 : 441 - 449
  • [33] Facile synthesis of Si-C nanocomposites with yolk-shell structure as an anode for lithium-ion batteries
    Ma, Yiheng
    Tang, Haoqing
    Zhang, Yao
    Li, Zhoufu
    Zhang, Xinhe
    Tang, Zhiyuan
    JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 704 : 599 - 606
  • [34] The yolk-shell FeSe@C nanobox with novel synthesis and its high performance for the anode of lithium-ion batteries
    Zhong, Du
    Chen, Jinwei
    Zhang, Jie
    Luo, Yan
    Li, Zhenjie
    Cheng, Li
    Chen, Yihan
    Wang, Gang
    Wang, Ruilin
    MATERIALS RESEARCH EXPRESS, 2019, 6 (08)
  • [35] Carbon Nanofiber Cages and Interface Engineering Stabilizing Silicon-Based Anode for High-Performance Lithium-Ion Batteries
    Yan, Xiang
    Hu, Liuyi
    Xia, Yang
    Zhang, Jun
    Zhang, Wenkui
    Gan, Yongping
    He, Xinping
    Xia, Xinhui
    Huang, Hui
    ACS APPLIED ENERGY MATERIALS, 2023, 7 (02) : 403 - 413
  • [36] Rational Design of the Robust Janus Shell on Silicon Anodes for High-Performance Lithium-Ion Batteries
    Yan, Yuantao
    Xu, Zhixin
    Liu, Congcong
    Dou, Huanglin
    Wei, Jingjiang
    Zhao, Xiaoli
    Ma, Jingjing
    Dong, Qiang
    Xu, Haisong
    He, Yu-shi
    Ma, Zi-Feng
    Yang, Xiaowei
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (19) : 17375 - 17383
  • [37] Uniform Yolk-Shell MoS2@Carbon Microsphere Anodes for High-Performance Lithium-Ion Batteries
    Pan, Yunmei
    Zhang, Jiajia
    Lu, Hongbin
    CHEMISTRY-A EUROPEAN JOURNAL, 2017, 23 (41) : 9937 - 9945
  • [38] Preparation and Electrochemical Performance of Anode for High-Performance Silicon-Based Composite Lithium-Ion Battery
    Zhang M.
    Li J.
    Su S.
    Zhang D.
    Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society, 2022, 50 (10): : 2591 - 2598
  • [39] A Self-Standing and Flexible Electrode of Yolk-Shell CoS2 Spheres Encapsulated with Nitrogen-Doped Graphene for High-Performance Lithium-Ion Batteries
    Qiu, Wenda
    Jiao, Jiqing
    Xia, Jian
    Zhong, Haimin
    Chen, Liuping
    CHEMISTRY-A EUROPEAN JOURNAL, 2015, 21 (11) : 4359 - 4367
  • [40] Chelation-Assisted formation of carbon nanotubes interconnected Yolk-Shell Silicon/Carbon anodes for High-Performance Lithium-ion batteries
    Wang, Chenyu
    Yuan, Manman
    Shi, Wenhua
    Liu, Xiaofang
    Wu, Liang
    Hu, Zhi-Yi
    Chen, Lihua
    Li, Yu
    Su, Bao-Lian
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2023, 641 : 747 - 757