Do feature selection methods for selecting environmental covariables enhance genomic prediction accuracy?

被引:10
作者
Montesinos-Lopez, Osval A. [1 ]
Crespo-Herrera, Leonardo [2 ]
Pierre, Carolina Saint [2 ]
Bentley, Alison R. [2 ]
de la Rosa-santamaria, Roberto [3 ]
Ascencio-Laguna, Jose Alejandro [4 ]
Agbona, Afolabi [5 ,6 ]
Gerard, Guillermo S. [2 ]
Montesinos-Lopez, Abelardo [7 ]
Crossa, Jose [2 ,8 ]
机构
[1] Univ Colima, Fac Telematica, Colima, Mexico
[2] Int Maize & Wheat Improvement Ctr CIMMYT, El Battan, Mexico
[3] Colegio Postgrad, Campus Tabasco, Tabasco, Mexico
[4] Inst Mexicano Transporte, Queretaro, Mexico
[5] Int Inst Trop Agr IITA, Ibadan, Nigeria
[6] Texas A&M Univ, Mol & Environm Plant Sci, College Stn, TX USA
[7] Univ Guadalajara, Ctr Univ Ciencias Exactas Ingn CUCEI, Guadalajara, JA, Mexico
[8] Colegio Postgrad, Campus Montecillos, Montecillos, Mexico
关键词
genomic prediction; feature selection; environmental covariables; genotype x environment interaction; genomic selection;
D O I
10.3389/fgene.2023.1209275
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Genomic selection (GS) is transforming plant and animal breeding, but its practical implementation for complex traits and multi-environmental trials remains challenging. To address this issue, this study investigates the integration of environmental information with genotypic information in GS. The study proposes the use of two feature selection methods (Pearson's correlation and Boruta) for the integration of environmental information. Results indicate that the simple incorporation of environmental covariates may increase or decrease prediction accuracy depending on the case. However, optimal incorporation of environmental covariates using feature selection significantly improves prediction accuracy in four out of six datasets between 14.25% and 218.71% under a leave one environment out cross validation scenario in terms of Normalized Root Mean Squared Error, but not relevant gain was observed in terms of Pearson & PRIME;s correlation. In two datasets where environmental covariates are unrelated to the response variable, feature selection is unable to enhance prediction accuracy. Therefore, the study provides empirical evidence supporting the use of feature selection to improve the prediction power of GS.
引用
收藏
页数:19
相关论文
共 30 条
[1]   Optimization of genomic selection training populations with a genetic algorithm [J].
Akdemir, Deniz ;
Sanchez, Julio I. ;
Jannink, Jean-Luc .
GENETICS SELECTION EVOLUTION, 2015, 47
[2]   Projecting results of zoned multi-environment trials to new locations using environmental covariates with random coefficient models: accuracy and precision [J].
Buntaran, Harimurti ;
Forkman, Johannes ;
Piepho, Hans-Peter .
THEORETICAL AND APPLIED GENETICS, 2021, 134 (05) :1513-1530
[3]   A survey on feature selection methods [J].
Chandrashekar, Girish ;
Sahin, Ferat .
COMPUTERS & ELECTRICAL ENGINEERING, 2014, 40 (01) :16-28
[4]   Enviromic Assembly Increases Accuracy and Reduces Costs of the Genomic Prediction for Yield Plasticity in Maize [J].
Costa-Neto, Germano ;
Crossa, Jose ;
Fritsche-Neto, Roberto .
FRONTIERS IN PLANT SCIENCE, 2021, 12
[5]   Nonlinear kernels, dominance, and envirotyping data increase the accuracy of genome-based prediction in multi-environment trials [J].
Costa-Neto, Germano ;
Fritsche-Neto, Roberto ;
Crossa, Jose .
HEREDITY, 2021, 126 (01) :92-106
[6]   Genome-enabled prediction for sparse testing in multi-environmental wheat trials [J].
Crespo-Herrera, Leonardo ;
Howard, Reka ;
Piepho, Hans-Peter ;
Perez-Rodriguez, Paulino ;
Montesinos-Lopez, Osval ;
Burgueno, Juan ;
Singh, Ravi ;
Mondal, Suchismita ;
Jarquin, Diego ;
Crossa, Jose .
PLANT GENOME, 2021, 14 (03)
[7]   Genomic Selection in Plant Breeding: Methods, Models, and Perspectives [J].
Crossa, Jose ;
Perez-Rodriguez, Paulino ;
Cuevas, Jaime ;
Montesinos-Lopez, Osval ;
Jarquin, Diego ;
de los Campos, Gustavo ;
Burgueno, Juan ;
Gonzalez-Camacho, Juan M. ;
Perez-Elizalde, Sergio ;
Beyene, Yoseph ;
Dreisigacker, Susanne ;
Singh, Ravi ;
Zhang, Xuecai ;
Gowda, Manje ;
Roorkiwal, Manish ;
Rutkoski, Jessica ;
Varshney, Rajeev K. .
TRENDS IN PLANT SCIENCE, 2017, 22 (11) :961-975
[8]   Genomic Prediction of Genotype x Environment Interaction Kernel Regression Models [J].
Cuevas, Jaime ;
Crossa, Jose ;
Soberanis, Victor ;
Perez-Elizalde, Sergio ;
Perez-Rodriguez, Paulino ;
de los Campos, Gustavo ;
Montesinos-Lopez, O. A. ;
Burgueno, Juan .
PLANT GENOME, 2016, 9 (03)
[9]   Genomic selection: genome-wide prediction in plant improvement [J].
Desta, Zeratsion Abera ;
Ortiz, Rodomiro .
TRENDS IN PLANT SCIENCE, 2014, 19 (09) :592-601
[10]   Genomic prediction offers the most effective marker assisted breeding approach for ability to prevent arsenic accumulation in rice grains [J].
Frouin, Julien ;
Labeyrie, Axel ;
Boisnard, Arnaud ;
Sacchi, Gian Attilio ;
Ahmadi, Nourollah .
PLOS ONE, 2019, 14 (06)