Cancer-associated fibroblast classification in single-cell and spatial proteomics data

被引:94
|
作者
Cords, Lena [1 ,2 ,3 ,4 ]
Tietscher, Sandra [1 ,2 ,3 ,4 ]
Anzeneder, Tobias [5 ]
Langwieder, Claus [6 ]
Rees, Martin [6 ]
de Souza, Natalie [1 ,2 ]
Bodenmiller, Bernd [1 ,2 ]
机构
[1] Univ Zurich, Dept Quant Biomed, CH-8057 Zurich, Switzerland
[2] Swiss Fed Inst Technol, Inst Mol Hlth Sci, CH-8093 Zurich, Switzerland
[3] Swiss Fed Inst Technol, Life Sci Zurich Grad Sch, CH-8057 Zurich, Switzerland
[4] Univ Zurich, CH-8057 Zurich, Switzerland
[5] Patients Tumor Bank Hope PATH, D-81337 Munich, Germany
[6] Pathol Josefshaus, D-44137 Dortmund, Germany
基金
欧洲研究理事会;
关键词
STROMAL CELLS; STEM-CELLS; TUMOR; PROMOTE; MARKER; CD10; IMMUNOSUPPRESSION; HETEROGENEITY; SUPPRESSION; EXPRESSION;
D O I
10.1038/s41467-023-39762-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cancer-associated fibroblasts (CAFs) are a diverse cell population within the tumour microenvironment, where they have critical effects on tumour evolution and patient prognosis. To define CAF phenotypes, we analyse a single-cell RNA sequencing (scRNA-seq) dataset of over 16,000 stromal cells from tumours of 14 breast cancer patients, based on which we define and functionally annotate nine CAF phenotypes and one class of pericytes. We validate this classification system in four additional cancer types and use highly multiplexed imaging mass cytometry on matched breast cancer samples to confirm our defined CAF phenotypes at the protein level and to analyse their spatial distribution within tumours. This general CAF classification scheme will allow comparison of CAF phenotypes across studies, facilitate analysis of their functional roles, and potentially guide development of new treatment strategies in the future. Cancer-associated fibroblasts (CAFs) have different subtypes and play diverse roles in the tumour microenvironment. Here, the authors use single-cell RNA-seq and multiplex imaging mass cytometry data to propose a CAF classification scheme of nine subtypes across different cancer types.
引用
收藏
页数:13
相关论文
共 50 条
  • [31]  Single-cell landscape of cancer-associated fibroblasts in immunotherapy resistance of hepatocellular carcinoma
    Wong, Patrick Pak-Chun
    Xiong, Zhewen
    Wu, Haoran
    Chen, Bonan
    To, Ka-Fai
    Chan, Stephen Lam
    Kang, Wei
    Cheng, Alfred Sze-Lok
    GUT, 2023, 72 (SUPPL_1) : A51 - A52
  • [32] Single-cell landscape of cancer-associated fibroblasts in immunotherapy resistance of hepatocellular carcinoma
    Wong, Patrick Pak-Chun
    Cao, Jianquan
    Xiong, Zhewen
    Wu, Haoran
    Cao, Qin
    Chen, Bonan
    To, Ka-Fai
    Chan, Stephen Lam
    Kang, Wei
    Cheng, Alfred Sze-Lok
    CANCER RESEARCH, 2024, 84 (06)
  • [33] A novel method to generate single-cell-derived cancer-associated fibroblast clones
    Hashimoto, Hiroko
    Suda, Yoshitaka
    Miyasita, Tomoyuki
    Ochiai, Atsusi
    Tsuboi, Masahiro
    Mastomi, Kenkichi
    Kiyono, Tohru
    Ishii, Genichiro
    CANCER SCIENCE, 2018, 109 : 643 - 643
  • [34] A novel method to generate single-cell-derived cancer-associated fibroblast clones
    Hashimoto, Hiroko
    Suda, Yoshitaka
    Miyashita, Tomoyuki
    Ochiai, Atsushi
    Tsuboi, Masahiro
    Masutomi, Kenkichi
    Kiyono, Tohru
    Ishii, Genichiro
    JOURNAL OF CANCER RESEARCH AND CLINICAL ONCOLOGY, 2017, 143 (08) : 1409 - 1419
  • [35] A novel method to generate single-cell-derived cancer-associated fibroblast clones
    Hiroko Hashimoto
    Yoshitaka Suda
    Tomoyuki Miyashita
    Atsushi Ochiai
    Masahiro Tsuboi
    Kenkichi Masutomi
    Tohru Kiyono
    Genichiro Ishii
    Journal of Cancer Research and Clinical Oncology, 2017, 143 : 1409 - 1419
  • [36] The Current State of Single-Cell Proteomics Data Analysis
    Vanderaa, Christophe
    Gatto, Laurent
    CURRENT PROTOCOLS, 2023, 3 (01):
  • [37] Imaging the future: the emerging era of single-cell spatial proteomics
    Paul, Indranil
    White, Carl
    Turcinovic, Isabella
    Emili, Andrew
    FEBS JOURNAL, 2021, 288 (24) : 6990 - 7001
  • [38] Proteomics mining of cancer hallmarks on a single-cell resolution
    Li, Maomao
    Zuo, Jing
    Yang, Kailin
    Wang, Ping
    Zhou, Shengtao
    MASS SPECTROMETRY REVIEWS, 2024, 43 (05) : 1019 - 1040
  • [39] Single-cell proteomics: potential implications for cancer diagnostics
    Gavasso, Sonia
    Gullaksen, Stein-Erik
    Skavland, Jorn
    Gjertsen, Bjorn T.
    EXPERT REVIEW OF MOLECULAR DIAGNOSTICS, 2016, 16 (05) : 579 - 589
  • [40] Cancer classification of single-cell gene expression data by neural network
    Kim, Bong-Hyun
    Yu, Kijin
    Lee, Peter C. W.
    BIOINFORMATICS, 2020, 36 (05) : 1360 - 1366