Cancer-associated fibroblast classification in single-cell and spatial proteomics data

被引:94
|
作者
Cords, Lena [1 ,2 ,3 ,4 ]
Tietscher, Sandra [1 ,2 ,3 ,4 ]
Anzeneder, Tobias [5 ]
Langwieder, Claus [6 ]
Rees, Martin [6 ]
de Souza, Natalie [1 ,2 ]
Bodenmiller, Bernd [1 ,2 ]
机构
[1] Univ Zurich, Dept Quant Biomed, CH-8057 Zurich, Switzerland
[2] Swiss Fed Inst Technol, Inst Mol Hlth Sci, CH-8093 Zurich, Switzerland
[3] Swiss Fed Inst Technol, Life Sci Zurich Grad Sch, CH-8057 Zurich, Switzerland
[4] Univ Zurich, CH-8057 Zurich, Switzerland
[5] Patients Tumor Bank Hope PATH, D-81337 Munich, Germany
[6] Pathol Josefshaus, D-44137 Dortmund, Germany
基金
欧洲研究理事会;
关键词
STROMAL CELLS; STEM-CELLS; TUMOR; PROMOTE; MARKER; CD10; IMMUNOSUPPRESSION; HETEROGENEITY; SUPPRESSION; EXPRESSION;
D O I
10.1038/s41467-023-39762-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cancer-associated fibroblasts (CAFs) are a diverse cell population within the tumour microenvironment, where they have critical effects on tumour evolution and patient prognosis. To define CAF phenotypes, we analyse a single-cell RNA sequencing (scRNA-seq) dataset of over 16,000 stromal cells from tumours of 14 breast cancer patients, based on which we define and functionally annotate nine CAF phenotypes and one class of pericytes. We validate this classification system in four additional cancer types and use highly multiplexed imaging mass cytometry on matched breast cancer samples to confirm our defined CAF phenotypes at the protein level and to analyse their spatial distribution within tumours. This general CAF classification scheme will allow comparison of CAF phenotypes across studies, facilitate analysis of their functional roles, and potentially guide development of new treatment strategies in the future. Cancer-associated fibroblasts (CAFs) have different subtypes and play diverse roles in the tumour microenvironment. Here, the authors use single-cell RNA-seq and multiplex imaging mass cytometry data to propose a CAF classification scheme of nine subtypes across different cancer types.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Benchmark of Data Integration in Single-Cell Proteomics
    Gong, Yaguo
    Dai, Yangbo
    Wu, Qibiao
    Guo, Li
    Yao, Xiaojun
    Yang, Qingxia
    ANALYTICAL CHEMISTRY, 2025, 97 (02) : 1254 - 1263
  • [22] Single-Cell Proteomics with Spatial Attributes: Tools and Techniques
    Lohani, Vartika
    Akhiya, A. R.
    Kundu, Soumen
    Akhter, M. D. Quasid
    Bag, Swarnendu
    ACS OMEGA, 2023, 8 (20): : 17499 - 17510
  • [23] Unbiased spatial proteomics with single-cell resolution in tissues
    Mund, Andreas
    Brunner, Andreas-David
    Mann, Matthias
    MOLECULAR CELL, 2022, 82 (12) : 2335 - 2349
  • [24] Single-cell and bulk transcriptomics identifies a tumor-specific CD36+ cancer-associated fibroblast subpopulation in colorectal cancer
    Wang, Jin
    Xi, Ming-Jia
    Lu, Qing
    Xia, Bi-Han
    Liu, Yu-Zhi
    Yang, Jin-Lin
    CANCER COMMUNICATIONS, 2024, 44 (04) : 495 - 498
  • [25] Single-cell RNA sequencing reveals a pro-invasive cancer-associated fibroblast subgroup associated with poor clinical outcomes in patients with gastric cancer
    Li, Xuechun
    Sun, Zhao
    Peng, Gongxin
    Xiao, Yi
    Guo, Junchao
    Wu, Bin
    Li, Xiaoyi
    Zhou, Weixun
    Li, Jiarui
    Li, Zhe
    Bai, Chunmei
    Zhao, Lin
    Han, Qin
    Zhao, Robert Chunhua
    Wang, Xiaoyue
    THERANOSTICS, 2022, 12 (02): : 620 - 638
  • [26] Clinically usable classification of cancer-associated fibroblast subtypes in pancreatic cancer
    Peng, Xianlu L.
    Kharitonova, Elena
    Kearney, Joseph
    McCabe, Ian
    Jenner, Madison
    Morrison, Ashley B.
    Iuga, Alina
    Rashid, Naim U.
    Yeh, Jen Jen
    CANCER RESEARCH, 2024, 84 (02)
  • [27] Single-cell proteomics
    Doerr, Allison
    NATURE METHODS, 2019, 16 (01) : 20 - 20
  • [28] Single-Cell Proteomics
    Vistain, Luke F.
    Tay, Savas
    TRENDS IN BIOCHEMICAL SCIENCES, 2021, 46 (08) : 661 - 672
  • [29] Single-cell proteomics
    Allison Doerr
    Nature Methods, 2019, 16 : 20 - 20
  • [30] Single-cell RNA sequencing reveals differential gene expression of cancer-associated fibroblast markers in mycosis fungoides by stage and race
    Johnson, C.
    Solhjoo, S.
    Li, W.
    Ali, I.
    Nash, K.
    Hicks, S.
    Timp, W.
    JOURNAL OF INVESTIGATIVE DERMATOLOGY, 2024, 144 (08) : S18 - S18