Homogenization of the linearized ionic transport equations in random porous media

被引:0
|
作者
Mikelic, Andro [1 ]
Piatnitski, Andrey [2 ,3 ,4 ]
机构
[1] Univ Lyon, Univ Claude Bernard Lyon 1, Inst Camille Jordan, CNRS UMR 5208, 43 blvd 11 novembre 1918, Villeurbanne, France
[2] Arctic Univ Norway, Campus Narvik,Postbox 385, N-8505 Narvik, Norway
[3] RAS, Inst Informat Transmiss Problems, Bolshoi Karetny Per 19, Moscow 127051, Russia
[4] RUDN Univ, Peoples Friendship Univ Russia, Math Inst, Ulitsa Miklukho Maklaya 6, Moscow 117198, Russia
关键词
Boltzmann-Poisson equation; homogenization; electro-osmosis; random porous media; ONSAGERS RECIPROCITY RELATIONS; CHEMO-MECHANICAL PHENOMENA; NERNST-PLANCK EQUATIONS; EXPANSIVE CLAYS; POROSITY MODEL; 2-SCALE MODEL; FLOW; APPROXIMATION; CONVERGENCE; FLUID;
D O I
10.1088/1361-6544/acda73
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we obtain the homogenization results for a system of partial differential equations describing the transport of a N-component electrolyte in a dilute Newtonian solvent through a rigid random disperse porous medium. We present a study of the nonlinear Poisson-Boltzmann equation in a random medium, establish convergence of the stochastic homogenization procedure and prove well-posedness of the two-scale homogenized equations. In addition, after separating scales, we prove that the effective tensor satisfies the so-called Onsager properties, that is the tensor is symmetric and positive definite. This result shows that the Onsager theory applies to random porous media. The strong convergence of the fluxes is also established. In the periodic case homogenization results for the mentioned system have been obtained in Allaire et al (2010 J. Math. Phys. 51 123103).
引用
收藏
页码:3835 / 3865
页数:31
相关论文
共 50 条
  • [41] A DOMAIN DECOMPOSITION APPROACH TO FINITE-EPSILON HOMOGENIZATION OF SCALAR TRANSPORT IN POROUS MEDIA
    Davit, Yohan
    Golfier, Fabrice
    Latche, Jean-Claude
    Quintard, Michel
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2019, 79 (05) : 1797 - 1822
  • [42] Ion transport through deformable porous media: derivation of the macroscopic equations using upscaling
    Grégoire Allaire
    Olivier Bernard
    Jean-François Dufrêche
    Andro Mikelić
    Computational and Applied Mathematics, 2017, 36 : 1431 - 1462
  • [43] Dimensionality effects on multicomponent ionic transport and surface complexation in porous media
    Cogorno, Jacopo
    Stolze, Lucien
    Muniruzzaman, Muhammad
    Rolle, Massimo
    GEOCHIMICA ET COSMOCHIMICA ACTA, 2022, 318 : 230 - 246
  • [44] Upscaling nonlinear adsorption in periodic porous media - homogenization approach
    Allaire, Gregoire
    Hutridurga, Harsha
    APPLICABLE ANALYSIS, 2016, 95 (10) : 2126 - 2161
  • [45] Temporal Markov Processes for Transport in Porous Media: Random Lattice Networks
    Delgoshaie, Amir H.
    Jenny, Patrick
    Tchelepi, Hamdi A.
    WATER RESOURCES RESEARCH, 2018, 54 (05) : 3376 - 3391
  • [46] Homogenization of random functionals on solutions of stochastic equations
    Granovski Y.I.
    Makhno S.Y.
    Journal of Mathematical Sciences, 2016, 214 (2) : 186 - 199
  • [47] HOMOGENIZATION OF SYMMETRIC JUMP PROCESSES IN RANDOM MEDIA
    Chen, Xin
    Chen, Zhen-Qing
    Kumagai, Takashi
    Wang, Jian
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2021, 66 (01): : 83 - 105
  • [48] Modelling of waves in fluid-saturated porous media with high contrast heterogeneity: homogenization approach
    Rohan, Eduard
    Naili, Salah
    Vu-Hieu Nguyen
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2018, 98 (09): : 1699 - 1733
  • [49] HOMOGENIZATION, SYMMETRY, AND PERIODIZATION IN DIFFUSIVE RANDOM MEDIA
    Alexanderian, Alen
    Rathinam, Muruhan
    Rostamian, Rouben
    ACTA MATHEMATICA SCIENTIA, 2012, 32 (01) : 129 - 154
  • [50] HOMOGENIZATION,SYMMETRY,AND PERIODIZATION IN DIFFUSIVE RANDOM MEDIA
    Alen Alexanderian
    Muruhan Rathinam
    Rouben Rostamian
    Acta Mathematica Scientia, 2012, 32 (01) : 129 - 154