Homogenization of the linearized ionic transport equations in random porous media

被引:0
|
作者
Mikelic, Andro [1 ]
Piatnitski, Andrey [2 ,3 ,4 ]
机构
[1] Univ Lyon, Univ Claude Bernard Lyon 1, Inst Camille Jordan, CNRS UMR 5208, 43 blvd 11 novembre 1918, Villeurbanne, France
[2] Arctic Univ Norway, Campus Narvik,Postbox 385, N-8505 Narvik, Norway
[3] RAS, Inst Informat Transmiss Problems, Bolshoi Karetny Per 19, Moscow 127051, Russia
[4] RUDN Univ, Peoples Friendship Univ Russia, Math Inst, Ulitsa Miklukho Maklaya 6, Moscow 117198, Russia
关键词
Boltzmann-Poisson equation; homogenization; electro-osmosis; random porous media; ONSAGERS RECIPROCITY RELATIONS; CHEMO-MECHANICAL PHENOMENA; NERNST-PLANCK EQUATIONS; EXPANSIVE CLAYS; POROSITY MODEL; 2-SCALE MODEL; FLOW; APPROXIMATION; CONVERGENCE; FLUID;
D O I
10.1088/1361-6544/acda73
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we obtain the homogenization results for a system of partial differential equations describing the transport of a N-component electrolyte in a dilute Newtonian solvent through a rigid random disperse porous medium. We present a study of the nonlinear Poisson-Boltzmann equation in a random medium, establish convergence of the stochastic homogenization procedure and prove well-posedness of the two-scale homogenized equations. In addition, after separating scales, we prove that the effective tensor satisfies the so-called Onsager properties, that is the tensor is symmetric and positive definite. This result shows that the Onsager theory applies to random porous media. The strong convergence of the fluxes is also established. In the periodic case homogenization results for the mentioned system have been obtained in Allaire et al (2010 J. Math. Phys. 51 123103).
引用
收藏
页码:3835 / 3865
页数:31
相关论文
共 50 条
  • [1] Homogenization of the linearized ionic transport equations in rigid periodic porous media
    Allaire, Gregoire
    Mikelic, Andro
    Piatnitski, Andrey
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (12)
  • [2] Homogenization of the ionic transport equations in periodic porous media
    Looker, Jason R.
    Carnie, Steven L.
    TRANSPORT IN POROUS MEDIA, 2006, 65 (01) : 107 - 131
  • [3] Homogenization of the Ionic Transport Equations in Periodic Porous Media
    Jason R. Looker
    Steven L. Carnie
    Transport in Porous Media, 2006, 65 : 107 - 131
  • [4] Ion transport through deformable porous media: derivation of the macroscopic equations using upscaling
    Allaire, Gregoire
    Bernard, Olivier
    Dufreche, Jean-Francois
    Mikelic, Andro
    COMPUTATIONAL & APPLIED MATHEMATICS, 2017, 36 (03) : 1431 - 1462
  • [5] Homogenization results for ionic transport in periodic porous media
    Timofte, Claudia
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 68 (09) : 1024 - 1031
  • [6] Ion transport in porous media: derivation of the macroscopic equations using upscaling and properties of the effective coefficients
    Allaire, Gregoire
    Brizzi, Robert
    Dufreche, Jean-Francois
    Mikelic, Andro
    Piatnitski, Andrey
    COMPUTATIONAL GEOSCIENCES, 2013, 17 (03) : 479 - 495
  • [7] HOMOGENIZATION OF THE POISSON-NERNST-PLANCK EQUATIONS FOR ION TRANSPORT IN CHARGED POROUS MEDIA
    Schmuck, Markus
    Bazant, Martin Z.
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2015, 75 (03) : 1369 - 1401
  • [8] Numerical homogenization of electrokinetic equations in porous media using lattice-Boltzmann simulations
    Obliger, Amael
    Duvail, Magali
    Jardat, Marie
    Coelho, Daniel
    Bekri, Samir
    Rotenberg, Benjamin
    PHYSICAL REVIEW E, 2013, 88 (01):
  • [9] Homogenization based two-scale modelling of ionic transport in fluid saturated deformable porous media
    Turjanicova, Jana
    Rohan, Eduard
    Lukes, Vladimir
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 78 (09) : 3211 - 3235
  • [10] Role of non-ideality for the ion transport in porous media: Derivation of the macroscopic equations using upscaling
    Allaire, Gregoire
    Brizzi, Robert
    Dufreche, Jean-Francois
    Mikelic, Andro
    Piatnitski, Andrey
    PHYSICA D-NONLINEAR PHENOMENA, 2014, 282 : 39 - 60