Bifurcation of Limit Cycles and Center in 3D Cubic Systems with Z3-Equivariant Symmetry

被引:1
作者
Huang, Ting [1 ,2 ]
Gu, Jieping [3 ]
Ouyang, Yuting [2 ]
Huang, Wentao [2 ]
机构
[1] Guangzhou City Univ Technol, Sch Comp Engn, Guangzhou 510800, Peoples R China
[2] Guangxi Normal Univ, Coll Math & Stat, Guilin 541006, Peoples R China
[3] Guangxi Vocat Normal Univ, Sch Educ, Nanning 530007, Peoples R China
基金
中国国家自然科学基金;
关键词
three-dimensional cubic systems; Z3-equivariant symmetry; limit cycle; center; Darboux integral method; FINE FOCUS POINTS; HAMILTONIAN SYSTEM; HOPF-BIFURCATION; NEURAL-NETWORK; VECTOR-FIELDS; EXISTENCE; R-3;
D O I
10.3390/math11112563
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper focuses on investigating the bifurcation of limit cycles and centers within a specific class of three-dimensional cubic systems possessing Z(3)-equivariant symmetry. By calculating the singular point values of the systems, we obtain a necessary condition for a singular point to be a center. Subsequently, the Darboux integral method is employed to demonstrate that this condition is also sufficient. Additionally, we demonstrate that the system can bifurcate 15 small amplitude limit cycles with a distribution pattern of 5-5-5 originating from the singular points after proper perturbation. This finding represents a novel contribution to the understanding of the number of limit cycles present in three-dimensional cubic systems with Z3-equivariant symmetry.
引用
收藏
页数:22
相关论文
共 47 条
[1]   Bifurcation of limit cycles from a 4-dimensional center in Rm in resonance 1: N [J].
Barreira, Luis ;
Llibre, Jaume ;
Valls, Claudia .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 389 (02) :754-768
[2]   Multiple Hopf bifurcation in R3 and inverse Jacobi multipliers [J].
Buica, Adriana ;
Garcia, Isaac A. ;
Maza, Susanna .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 256 (01) :310-325
[3]   Existence of inverse Jacobi multipliers around Hopf points in R3: Emphasis on the center problem [J].
Buica, Adriana ;
Garcia, Isaac A. ;
Maza, Susanna .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (12) :6324-6336
[4]  
Chen L., 1979, Acta Math. Sinica (Chin. Ser.), V22, P751
[5]  
Du C., 2009, NAT SCI J XIANGTAN U, V31, P12
[6]   A Class of Three-Dimensional Quadratic Systems with Ten Limit Cycles [J].
Du Chaoxiong ;
Liu Yirong ;
Huang Wentao .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2016, 26 (09)
[7]   Center problem and the bifurcation of limit cycles for a cubic polynomial system [J].
Du, Chaoxiong ;
Huang, Wentao ;
Zhang, Qi .
APPLIED MATHEMATICAL MODELLING, 2015, 39 (17) :5200-5215
[8]   Limit Cycles Bifurcations for a Class of Kolmogorov Model in Symmetrical Vector Field [J].
Du Chaoxiong ;
Liu Yirong ;
Huang Wentao .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2014, 24 (03)
[9]  
Dulac H., 1923, Bull. Soc. Math. Fr., V51, P45
[10]   The center problem on a center manifold in R3 [J].
Edneral, Victor F. ;
Mahdi, Adam ;
Romanovski, Valery G. ;
Shafer, Douglas S. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (04) :2614-2622