Measuring Encapsulation Efficiency in Cell-Mimicking Giant Unilamellar Vesicles

被引:2
作者
Supramaniam, Pashiini [1 ]
Wang, Zibo [2 ,3 ]
Chatzimichail, Stelios [2 ]
Parperis, Christopher [1 ,3 ]
Kumar, Aditi [1 ]
Ho, Vanessa [1 ]
Ces, Oscar [1 ,4 ]
Salehi-Reyhani, Ali [2 ,4 ,5 ]
机构
[1] Imperial Coll London, Dept Chem, London W12 0BZ, England
[2] Imperial Coll London, Dept Surg & Canc, London W12 0HS, England
[3] Kings Coll London, Dept Chem, London SE1 1DB, England
[4] Imperial Coll London, fabriCELL, London SW7 2AZ, England
[5] Imperial Coll London, Inst Mol Sci & Engn, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会;
关键词
PROTEIN COPY NUMBER; ABSOLUTE QUANTIFICATION; POLYMER ENCAPSULATION; LIPOSOMES; MICROARRAYS; SELECTION; SYSTEMS; FUSION; SIZE;
D O I
10.1021/acssynbio.2c00684
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
One of the main drivers within the field of bottom-up synthetic biology is to develop artificial chemical machines, perhaps even living systems, that have programmable functionality. Numerous toolkits exist to generate giant unilamellar vesicle based artificial cells. However, methods able to quantitatively measure their molecular constituents upon formation is an underdeveloped area. We report an artificial cell quality control (AC/QC) protocol using a microfluidic-based single-molecule approach, enabling the absolute quantification of encapsulated biomolecules. While the measured average encapsulation efficiency was 11.4 +/- 6.8%, the AC/QC method allowed us to determine encapsulation efficiencies per vesicle, which varied significantly from 2.4 to 41%. We show that it is possible to achieve a desired concentration of biomolecule within each vesicle by commensurate compensation of its concentration in the seed emulsion. However, the variability in encapsulation efficiency suggests caution is necessary when using such vesicles as simplified biological models or standards.
引用
收藏
页码:1227 / 1238
页数:12
相关论文
共 50 条
[31]   A dynamic microarray device for pairing and electrofusion of giant unilamellar vesicles [J].
Sugahara, Keisuke ;
Morimoto, Yuya ;
Takamori, Sho ;
Takeuchi, Shoji .
SENSORS AND ACTUATORS B-CHEMICAL, 2020, 311
[32]   Cell-Free Protein Synthesis inside Giant Unilamellar Vesicles Analyzed by Flow Cytometry [J].
Nishimura, Koji ;
Matsuura, Tomoaki ;
Nishimura, Kazuya ;
Sunami, Takeshi ;
Suzuki, Hiroaki ;
Yomo, Tetsuya .
LANGMUIR, 2012, 28 (22) :8426-8432
[33]   Light-Switchable Membrane Permeability in Giant Unilamellar Vesicles [J].
Albanese, Paola ;
Cataldini, Simone ;
Ren, Chloe Z. -J. ;
Valletti, Nadia ;
Brunetti, Jlenia ;
Chen, Jack L. -Y. ;
Rossi, Federico .
PHARMACEUTICS, 2022, 14 (12)
[34]   Division and Regrowth of Phase-Separated Giant Unilamellar Vesicles** [J].
Dreher, Yannik ;
Jahnke, Kevin ;
Bobkova, Elizaveta ;
Spatz, Joachim P. ;
Goepfrich, Kerstin .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (19) :10661-10669
[35]   A Simple Method for the Reconstitution of Membrane Proteins into Giant Unilamellar Vesicles [J].
Armelle Varnier ;
Frédérique Kermarrec ;
Iulia Blesneac ;
Christophe Moreau ;
Lavinia Liguori ;
Jean Luc Lenormand ;
Nathalie Picollet-D’hahan .
Journal of Membrane Biology, 2010, 233 :85-92
[36]   Interaction of Giant Unilamellar Vesicles with the Surface Nanostructures on Dragonfly Wings [J].
Cheeseman, Samuel ;
Vi Khanh Truong ;
Walter, Vivien ;
Thalmann, Fabrice ;
Marques, Carlos M. ;
Hanssen, Eric ;
Vongsvivut, Jitraporn ;
Tobin, Mark J. ;
Baulin, Vladimir A. ;
Juodkazis, Saulius ;
Maclaughlin, Shane ;
Bryant, Gary ;
Crawford, Russell J. ;
Ivanova, Elena P. .
LANGMUIR, 2019, 35 (06) :2422-2430
[37]   In Vitro Reconstitution of the Actin Cytoskeleton Inside Giant Unilamellar Vesicles [J].
Chen, Sheng ;
Sun, Zachary Gao ;
Murrell, Michael P. .
JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2022, (186)
[38]   Elucidating the Membrane Dynamics and Encapsulation Mechanism of Large DNA Molecules Under Molecular Crowding Conditions Using Giant Unilamellar Vesicles [J].
Tsugane, Mamiko ;
Suzuki, Hiroaki .
ACS SYNTHETIC BIOLOGY, 2020, 9 (10) :2819-2827
[39]   Preparing giant unilamellar vesicles (GUVs) of complex lipid mixtures on demand: Mixing small unilamellar vesicles of compositionally heterogeneous mixtures [J].
Bhatia, Tripta ;
Husen, Peter ;
Brewer, Jonathan ;
Bagatolli, Luis A. ;
Hansen, Per L. ;
Ipsen, John H. ;
Mouritsen, Ole G. .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2015, 1848 (12) :3175-3180
[40]   A convenient protocol for generating giant unilamellar vesicles containing SNARE proteins using electroformation [J].
Witkowska, Agata ;
Jablonski, Lukasz ;
Jahn, Reinhard .
SCIENTIFIC REPORTS, 2018, 8