Techno-economic analysis for hydrogen-burning power plant with onsite hydrogen production unit based on methane catalytic decomposition

被引:10
|
作者
Li, Yifu [1 ]
Yu, Hesheng [1 ,2 ]
Jiang, Xinghua [3 ]
Deng, Guorui [3 ]
Wen, John Z.
Tan, Zhongchao [1 ]
机构
[1] Univ Waterloo, Dept Mech & Mechatron Engn, Waterloo, ON N2L 3G1, Canada
[2] China Univ Min & Technol, Sch Chem Engn & Technol, Xuzhou 221116, Jiangsu, Peoples R China
[3] Super Carbon Dong Guan Co Ltd, Dongguan, Guangdong, Peoples R China
基金
加拿大自然科学与工程研究理事会;
关键词
Hydrogen energy; Methane catalytic decomposition; Techno-economic analysis; Power generation; GAS COMBINED-CYCLE; CARBON NANOTUBES; FLUIDIZED-BED; THERMOCATALYTIC DECOMPOSITION; THERMAL-DECOMPOSITION; MINIMUM FLUIDIZATION; EMISSION; VELOCITY; CAPTURE; SYSTEM;
D O I
10.1016/j.enconman.2023.116674
中图分类号
O414.1 [热力学];
学科分类号
摘要
Hydrogen (H2) is the fuel of the future since it only produces water as the combustion product. This paper proposes a rational design of a hydrogen-burning power plant integrated with an onsite hydrogen production unit. The H2 production from natural gas is achieved by converting the CH4 to gaseous H2 and solid carbon product based on CH4 catalytic decomposition. Fe-based catalyst is suggested for the onsite production of H2 because it results in the lowest net-levelized cost of electricity (LCOE) compared to using Ni-based and activated carbon catalysts. The mole fraction of H2 in the fuel increases with the increase of natural gas bypass ratio and CH4 conversion rate from 10 to 100%, and the maximum mole fraction of H2 reaches 93.3%. The studied hydrogen-burning power plant can reduce the CO2 emission by 80.2% compared to direct power generation from natural gas at the cost of 44% less power due to the lower heating value of H2 compared to CH4. It is noted that selling the carbon product becomes an important income source to subsidies the plant cost. However, the in-crease in the catalyst price and the decrease in the carbon selling price may hinder the profitability of the power plant. Finally, a set of natural gas bypass ratios and CH4 conversion rates is recommended to ensure the power plant produces at least 80% of the electricity compared to the direct power generation from natural gas; it also achieves a more competitive net-LCOE even under the catalyst cost and carbon selling price varying to 300 and 40%, respectively.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Techno-economic Analysis of Distributed Hydrogen Production from Natural Gas
    Luk Ho Ting
    Lei Ho Man
    Ng Wai Yee
    Ju Yihan
    Lam Koon Fung
    CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2012, 20 (03) : 489 - 496
  • [32] Modeling, analysis, and techno-economic assessment of a clean power conversion system with green hydrogen production
    Sebbagh, Toufik
    BULLETIN OF THE POLISH ACADEMY OF SCIENCES-TECHNICAL SCIENCES, 2024, 72 (04)
  • [33] Techno-economic synergy analysis of integrated electric power and hydrogen system
    Sahraie, Elahe
    Kamwa, Innocent
    Moeini, Ali
    Mohseni-Bonab, Seyed Masoud
    ENERGY STRATEGY REVIEWS, 2024, 55
  • [34] Techno-economic analysis of hydrogen energy for renewable energy power smoothing
    Kong, Lingguo
    Li, Linagyuan
    Cai, Guowei
    Liu, Chuang
    Ma, Ping
    Bian, Yudong
    Ma, Tao
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (03) : 2847 - 2861
  • [35] Techno-economic analysis of electrochemical hydrogen production coupled with alternative oxidation
    Li, Jinze
    Xie, Wenfu
    Zhou, Hua
    Li, Zhenhua
    Shao, Mingfei
    CHEMICAL ENGINEERING SCIENCE, 2024, 298
  • [36] Techno-economic analysis to identify the optimal conditions for green hydrogen production
    Henry, Ashleigh
    McStay, Daniel
    Rooney, David
    Robertson, Peter
    Foley, Aoife
    ENERGY CONVERSION AND MANAGEMENT, 2023, 291
  • [37] Hydrogen production from woody biomass gasification: a techno-economic analysis
    Gubin, Veronica
    Benedikt, Florian
    Thelen, Ferdinand
    Hammerschmid, Martin
    Popov, Tom
    Hofbauer, Hermann
    Mueller, Stefan
    BIOFUELS BIOPRODUCTS & BIOREFINING-BIOFPR, 2024, 18 (04): : 818 - 836
  • [38] Techno-Economic Optimisation of Green and Clean Hydrogen Production
    Loh, Yong Ying
    Ng, Denny K. S.
    Andiappan, Viknesh
    PROCESS INTEGRATION AND OPTIMIZATION FOR SUSTAINABILITY, 2024,
  • [39] Techno-economic assessment of hydrogen production from seawater
    Dokhani, Sepanta
    Assadi, Mohsen
    Pollet, Bruno G.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (26) : 9592 - 9608
  • [40] Green hydrogen production plants: A techno-economic review
    Abdelsalam, Rawan A.
    Mohamed, Moataz
    Farag, Hany E. Z.
    El-Saadany, Ehab F.
    ENERGY CONVERSION AND MANAGEMENT, 2024, 319