Improved Parameter Identification for Lithium-Ion Batteries Based on Complex-Order Beetle Swarm Optimization Algorithm

被引:7
|
作者
Zhang, Xiaohua [1 ,2 ]
Li, Haolin [1 ,3 ]
Zhang, Wenfeng [2 ,4 ]
Lopes, Antonio M. [5 ]
Wu, Xiaobo [6 ]
Chen, Liping [6 ]
机构
[1] Zhongkai Univ Agr & Engn, Coll Automat, Guangzhou 510225, Peoples R China
[2] Guangdong Hong Kong Macao Greater Bay Area Agr Pro, Guangzhou 510225, Peoples R China
[3] Zhongkai Univ Agr & Engn, Coll Sch Mech & Elect Engn, Guangzhou 510225, Peoples R China
[4] Guangdong Agr Prod Cold Chain Transportat & Logist, Guangzhou 510225, Peoples R China
[5] Univ Porto, Fac Engn, LAETA, INEGI, Rua Dr Roberto Frias, P-4200465 Porto, Portugal
[6] Hefei Univ Technol, Sch Elect Engn & Automat, Hefei 230009, Peoples R China
关键词
FO equivalent circuit; parameter identification; beetle swarm optimization; OF-CHARGE ESTIMATION; STATE;
D O I
10.3390/mi14020413
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
With the aim of increasing the model accuracy of lithium-ion batteries (LIBs), this paper presents a complex-order beetle swarm optimization (CBSO) method, which employs complex-order (CO) operator concepts and mutation into the traditional beetle swarm optimization (BSO). Firstly, a fractional-order equivalent circuit model of LIBs is established based on electrochemical impedance spectroscopy (EIS). Secondly, the CBSO is used for model parameters' identification, and the model accuracy is verified by simulation experiments. The root-mean-square error (RMSE) and maximum absolute error (MAE) optimization metrics show that the model accuracy with CBSO is superior when compared with the fractional-order BSO.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] State-of-charge estimation for lithium-ion batteries based on modified unscented Kalman filter using improved parameter identification
    Yao, Bin
    Cai, Yongxiang
    Liu, Wei
    Wang, Yang
    Chen, Xin
    Liao, Qiangqiang
    Fu, Zaiguo
    Cheng, Zhiyuan
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2024, 19 (05):
  • [42] Method for SoC Estimation in Lithium-Ion Batteries Based on Multiple Linear Regression and Particle Swarm Optimization
    Castanho, Diego
    Guerreiro, Marcio
    Silva, Ludmila
    Eckert, Jony
    Alves, Thiago Antonini
    Tadano, Yara de Souza
    Stevan, Sergio Luiz
    Siqueira, Hugo Valadares
    Correa, Fernanda Cristina
    ENERGIES, 2022, 15 (19)
  • [43] A Parameter Identification Method for Lithium-Ion Batteries Using Simplified Impedance Model and Fractional Order Kalman Filter
    Liu, Zheng
    Qiu, Yuan
    Yang, Chunshan
    Feng, Jin
    Jing, Benqin
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2022, 17 (01) : 197 - 208
  • [44] Parameter Identification of PEMFC Model Using Improved Dung Beetle Optimization Algorithm
    Zhang, Jingfeng
    Sun, Yalu
    Dong, Haiying
    He, Xin
    ELECTRONICS, 2025, 14 (01):
  • [45] Parameter Identification and Optimization for Lithium-Ion Battery State of Health Detection
    Sahay, Rahul
    Raghavan, Nagarajan
    2024 IEEE INTERNATIONAL CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT, ICPHM 2024, 2024, : 356 - 366
  • [46] Adaptive Parameter Identification and State-of-Charge Estimation of Lithium-Ion Batteries
    Rahimi-Eichi, Habiballah
    Chow, Mo-Yuen
    38TH ANNUAL CONFERENCE ON IEEE INDUSTRIAL ELECTRONICS SOCIETY (IECON 2012), 2012, : 4012 - 4017
  • [47] Variable fractional-order model for lithium-ion battery based on a hybrid fractional particle swarm optimization method with crisscross learning strategy
    Xue, Jinhua
    Wang, Deshun
    Tao, Yibin
    Zhuang, Jun
    2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 421 - 425
  • [48] Parameter Identification of Lithium-ion Battery Based on Multi-innovation Least Squares Algorithm
    Wei Z.
    Yuan K.
    Cheng L.
    Wang C.
    Xu H.
    Sun G.
    Zang H.
    Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2019, 43 (15): : 139 - 145
  • [49] Kinematic Parameter Identification for a Parallel Robot with an Improved Particle Swarm Optimization Algorithm
    Yu, Dayong
    APPLIED SCIENCES-BASEL, 2024, 14 (15):
  • [50] Extremum Seeking-based Parameter Identification for State-of-Power Prediction of Lithium-ion Batteries
    Wei, Chun
    Benosman, Mouhacine
    2016 IEEE INTERNATIONAL CONFERENCE ON RENEWABLE ENERGY RESEARCH AND APPLICATIONS (ICRERA), 2016, : 67 - 72