Improved Parameter Identification for Lithium-Ion Batteries Based on Complex-Order Beetle Swarm Optimization Algorithm

被引:7
|
作者
Zhang, Xiaohua [1 ,2 ]
Li, Haolin [1 ,3 ]
Zhang, Wenfeng [2 ,4 ]
Lopes, Antonio M. [5 ]
Wu, Xiaobo [6 ]
Chen, Liping [6 ]
机构
[1] Zhongkai Univ Agr & Engn, Coll Automat, Guangzhou 510225, Peoples R China
[2] Guangdong Hong Kong Macao Greater Bay Area Agr Pro, Guangzhou 510225, Peoples R China
[3] Zhongkai Univ Agr & Engn, Coll Sch Mech & Elect Engn, Guangzhou 510225, Peoples R China
[4] Guangdong Agr Prod Cold Chain Transportat & Logist, Guangzhou 510225, Peoples R China
[5] Univ Porto, Fac Engn, LAETA, INEGI, Rua Dr Roberto Frias, P-4200465 Porto, Portugal
[6] Hefei Univ Technol, Sch Elect Engn & Automat, Hefei 230009, Peoples R China
关键词
FO equivalent circuit; parameter identification; beetle swarm optimization; OF-CHARGE ESTIMATION; STATE;
D O I
10.3390/mi14020413
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
With the aim of increasing the model accuracy of lithium-ion batteries (LIBs), this paper presents a complex-order beetle swarm optimization (CBSO) method, which employs complex-order (CO) operator concepts and mutation into the traditional beetle swarm optimization (BSO). Firstly, a fractional-order equivalent circuit model of LIBs is established based on electrochemical impedance spectroscopy (EIS). Secondly, the CBSO is used for model parameters' identification, and the model accuracy is verified by simulation experiments. The root-mean-square error (RMSE) and maximum absolute error (MAE) optimization metrics show that the model accuracy with CBSO is superior when compared with the fractional-order BSO.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Prognostics of Lithium-Ion Batteries Based on the Verhulst Model, Particle Swarm Optimization and Particle Filter
    Xian, Weiming
    Long, Bing
    Li, Min
    Wang, Houjun
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2014, 63 (01) : 2 - 17
  • [32] Physics-based parameter identification of an electrochemical model for lithium-ion batteries with two-population optimization method
    Tian, Aina
    Dong, Kailang
    Yang, Xiao-Guang
    Wang, Yuqin
    He, Luyao
    Gao, Yang
    Jiang, Jiuchun
    APPLIED ENERGY, 2025, 378
  • [33] State of charge estimation for lithium-ion batteries based on fractional order multiscale algorithm
    Guo, Haisheng
    Han, Xudong
    Yang, Run
    Shi, Jinjin
    JOURNAL OF ENERGY STORAGE, 2022, 55
  • [34] CSTR parameter identification and PID control optimization based on improved swarm intelligence algorithm
    Wang, Ronglin
    Wang, Haibo
    Liu, Jieting
    Li, Pengtao
    Zhao, Chuanzhe
    Song, Yadi
    ENGINEERING RESEARCH EXPRESS, 2025, 7 (01):
  • [35] Fast parameter identification of lithium-ion batteries via classification model-assisted Bayesian optimization
    Wang, Bing-Chuan
    He, Yan-Bo
    Liu, Jiao
    Luo, Biao
    ENERGY, 2024, 288
  • [36] Lithium-ion battery modeling and parameter identification based on fractional theory
    Hu, Minghui
    Li, Yunxiao
    Li, Shuxian
    Fu, Chunyun
    Qin, Datong
    Li, Zonghua
    ENERGY, 2018, 165 : 153 - 163
  • [37] Fifth-order resistance-capacitance-based optimal equivalent circuit model of lithium-ion batteries with improved transient search optimization algorithm
    Hasanien, Hany M.
    Alqahtani, Ayedh H.
    Fahmy, Hend M.
    Alharbi, Mohammed
    Kim, Jonghoon
    ENERGY, 2025, 322
  • [38] Parameter identification of PMSM based on dung beetle optimization algorithm
    Yang, Xiaoliang
    Cui, Yuyue
    Jia, Lianhua
    Sun, Zhihong
    Zhang, Peng
    Zhao, Jiane
    Wang, Rui
    ARCHIVES OF ELECTRICAL ENGINEERING, 2023, 72 (04) : 1055 - 1072
  • [39] An Information Analysis Based Online Parameter Identification Method for Lithium-ion Batteries in Electric Vehicles
    Guo, Ruohan
    Shen, Weixiang
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2024, 71 (07) : 7095 - 7105
  • [40] Parameter Sensitivity Analysis for Fractional-Order Modeling of Lithium-Ion Batteries
    Zhou, Daming
    Zhang, Ke
    Ravey, Alexandre
    Gao, Fei
    Miraoui, Abdellatif
    ENERGIES, 2016, 9 (03)