Improved Parameter Identification for Lithium-Ion Batteries Based on Complex-Order Beetle Swarm Optimization Algorithm

被引:7
|
作者
Zhang, Xiaohua [1 ,2 ]
Li, Haolin [1 ,3 ]
Zhang, Wenfeng [2 ,4 ]
Lopes, Antonio M. [5 ]
Wu, Xiaobo [6 ]
Chen, Liping [6 ]
机构
[1] Zhongkai Univ Agr & Engn, Coll Automat, Guangzhou 510225, Peoples R China
[2] Guangdong Hong Kong Macao Greater Bay Area Agr Pro, Guangzhou 510225, Peoples R China
[3] Zhongkai Univ Agr & Engn, Coll Sch Mech & Elect Engn, Guangzhou 510225, Peoples R China
[4] Guangdong Agr Prod Cold Chain Transportat & Logist, Guangzhou 510225, Peoples R China
[5] Univ Porto, Fac Engn, LAETA, INEGI, Rua Dr Roberto Frias, P-4200465 Porto, Portugal
[6] Hefei Univ Technol, Sch Elect Engn & Automat, Hefei 230009, Peoples R China
关键词
FO equivalent circuit; parameter identification; beetle swarm optimization; OF-CHARGE ESTIMATION; STATE;
D O I
10.3390/mi14020413
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
With the aim of increasing the model accuracy of lithium-ion batteries (LIBs), this paper presents a complex-order beetle swarm optimization (CBSO) method, which employs complex-order (CO) operator concepts and mutation into the traditional beetle swarm optimization (BSO). Firstly, a fractional-order equivalent circuit model of LIBs is established based on electrochemical impedance spectroscopy (EIS). Secondly, the CBSO is used for model parameters' identification, and the model accuracy is verified by simulation experiments. The root-mean-square error (RMSE) and maximum absolute error (MAE) optimization metrics show that the model accuracy with CBSO is superior when compared with the fractional-order BSO.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Parameter Identification for Lithium-Ion Battery Based on Hybrid Genetic-Fractional Beetle Swarm Optimization Method
    Guo, Peng
    Wu, Xiaobo
    Lopes, Antonio M.
    Cheng, Anyu
    Xu, Yang
    Chen, Liping
    MATHEMATICS, 2022, 10 (17)
  • [2] Improved coyote optimization algorithm for parameter estimation of lithium-ion batteries
    Hao, Yuefei
    Ding, Jie
    Huang, Shimeng
    Xiao, Min
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART A-JOURNAL OF POWER AND ENERGY, 2023, 237 (04) : 787 - 796
  • [3] Electrochemical modeling and parameter identification based on bacterial foraging optimization algorithm for lithium-ion batteries
    Ma, Yan
    Ru, Jingpei
    Yin, Mingyue
    Chen, Hong
    Zheng, Weitao
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2016, 46 (11) : 1119 - 1131
  • [4] Electrochemical modeling and parameter identification based on bacterial foraging optimization algorithm for lithium-ion batteries
    Yan Ma
    Jingpei Ru
    Mingyue Yin
    Hong Chen
    Weitao Zheng
    Journal of Applied Electrochemistry, 2016, 46 : 1119 - 1131
  • [5] Adaptive model parameter identification for lithium-ion batteries based on improved coupling hybrid adaptive particle swarm optimization- simulated annealing method
    Zhou, Sida
    Liu, Xinhua
    Hua, Yang
    Zhou, Xinan
    Yang, Shichun
    JOURNAL OF POWER SOURCES, 2021, 482
  • [6] Parameter identification and identifiability analysis of lithium-ion batteries
    Choi, Yun Young
    Kim, Seongyoon
    Kim, Kyunghyun
    Kim, Sanghyun
    Choi, Jung-Il
    ENERGY SCIENCE & ENGINEERING, 2022, 10 (02) : 488 - 506
  • [7] Fractional-order modeling and parameter identification for lithium-ion batteries
    Wang, Baojin
    Li, Shengbo Eben
    Peng, Huei
    Liu, Zhiyuan
    JOURNAL OF POWER SOURCES, 2015, 293 : 151 - 161
  • [8] A set-membership algorithm based parameter identification method for lithium-ion batteries
    Jin, Qi
    Xiong, Rui
    Mu, Hao
    Wang, Jun
    CLEANER ENERGY FOR CLEANER CITIES, 2018, 152 : 580 - 585
  • [9] Parameter Identification of Electrochemical Model for Vehicular Lithium-Ion Battery Based on Particle Swarm Optimization
    Yang, Xiao
    Chen, Long
    Xu, Xing
    Wang, Wei
    Xu, Qiling
    Lin, Yuzhen
    Zhou, Zhiguang
    ENERGIES, 2017, 10 (11):
  • [10] Parameter Identification of Lithium-Ion Battery Model Based on African Vultures Optimization Algorithm
    Fahmy, Hend M.
    Sweif, Rania A.
    Hasanien, Hany M.
    Tostado-Veliz, Marcos
    Alharbi, Mohammed
    Jurado, Francisco
    MATHEMATICS, 2023, 11 (09)