Predicting decompression surgery by applying multimodal deep learning to patients' structured and unstructured health data

被引:12
|
作者
Jujjavarapu, Chethan [1 ]
Suri, Pradeep [2 ,3 ]
Pejaver, Vikas [4 ,5 ]
Friedly, Janna [2 ,3 ]
Gold, Laura S. [2 ,6 ]
Meier, Eric [2 ,7 ,8 ]
Cohen, Trevor [1 ]
Mooney, Sean D. [1 ]
Heagerty, Patrick J. [7 ,8 ]
Jarvik, Jeffrey G. [2 ,6 ,9 ,10 ]
机构
[1] Univ Washington, Sch Med, Dept Biomed Informat & Med Educ, Box 358047, Seattle, WA 98195 USA
[2] Univ Washington, Clin Learning Evidence & Res Ctr, 4333 Brooklyn Ave NE, Seattle, WA 98105 USA
[3] Univ Washington, Dept Rehabil Med, 1959 NE Pacific St, Seattle, WA 98195 USA
[4] Icahn Sch Med Mt Sinai, Inst Genom Hlth, New York, NY 10029 USA
[5] Icahn Sch Med Mt Sinai, Dept Genet & Genom Sci, New York, NY 10029 USA
[6] Univ Washington, Dept Radiol, 1959 NE Pacific St, Seattle, WA 98195 USA
[7] Univ Washington, Dept Biostat, Box 357232, Seattle, WA 98195 USA
[8] Univ Washington, Ctr Biomed Stat, Seattle, WA USA
[9] Univ Washington, Dept Neurol Surg, 1959 NE Pacific St, Seattle, WA 98195 USA
[10] Univ Washington, Dept Hlth Serv, Box 357660, Seattle, WA 98195 USA
基金
美国国家卫生研究院;
关键词
Lower back pain; Lumbar spinal stenosis; Lumbar disc herniation; Deep learning; Generalizability; Multimodal; Machine learning; Decompression surgery; Prediction; Classification; LOW-BACK-PAIN; LUMBAR DISC HERNIATION; NONOPERATIVE TREATMENT; SPINAL STENOSIS; CARE; TRAJECTORIES; DISABILITY; INJECTIONS; FEATURES; ADULTS;
D O I
10.1186/s12911-022-02096-x
中图分类号
R-058 [];
学科分类号
摘要
Background Low back pain (LBP) is a common condition made up of a variety of anatomic and clinical subtypes. Lumbar disc herniation (LDH) and lumbar spinal stenosis (LSS) are two subtypes highly associated with LBP. Patients with LDH/LSS are often started with non-surgical treatments and if those are not effective then go on to have decompression surgery. However, recommendation of surgery is complicated as the outcome may depend on the patient's health characteristics. We developed a deep learning (DL) model to predict decompression surgery for patients with LDH/LSS.Materials and method We used datasets of 8387 and 8620 patients from a prospective study that collected data from four healthcare systems to predict early (within 2 months) and late surgery (within 12 months after a 2 month gap), respectively. We developed a DL model to use patients' demographics, diagnosis and procedure codes, drug names, and diagnostic imaging reports to predict surgery. For each prediction task, we evaluated the model's performance using classical and generalizability evaluation. For classical evaluation, we split the data into training (80%) and testing (20%). For generalizability evaluation, we split the data based on the healthcare system. We used the area under the curve (AUC) to assess performance for each evaluation. We compared results to a benchmark model (i.e. LASSO logistic regression).Results For classical performance, the DL model outperformed the benchmark model for early surgery with an AUC of 0.725 compared to 0.597. For late surgery, the DL model outperformed the benchmark model with an AUC of 0.655 compared to 0.635. For generalizability performance, the DL model outperformed the benchmark model for early surgery. For late surgery, the benchmark model outperformed the DL model.Conclusions For early surgery, the DL model was preferred for classical and generalizability evaluation. However, for late surgery, the benchmark and DL model had comparable performance. Depending on the prediction task, the balance of performance may shift between DL and a conventional ML method. As a result, thorough assessment is needed to quantify the value of DL, a relatively computationally expensive, time-consuming and less interpretable method.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Deep learning to convert unstructured CT pulmonary angiography reports into structured reports
    Adam Spandorfer
    Cody Branch
    Puneet Sharma
    Pooyan Sahbaee
    U. Joseph Schoepf
    James G. Ravenel
    John W. Nance
    European Radiology Experimental, 3
  • [32] Multimodal functional deep learning for multiomics data
    Zhou, Yuan
    Geng, Pei
    Zhang, Shan
    Xiao, Feifei
    Cai, Guoshuai
    Chen, Li
    Lu, Qing
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (05)
  • [33] Personalized Federated Learning by Structured and Unstructured Pruning under Data Heterogeneity
    Vahidian, Saeed
    Morafah, Mahdi
    Lin, Bill
    2021 IEEE 41ST INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING SYSTEMS WORKSHOPS (ICDCSW 2021), 2021, : 27 - 34
  • [34] Applied Machine Learning for Spine Surgeons: Predicting Outcome for Patients Undergoing Treatment for Lumbar Disc Herniation Using PRO Data
    Pedersen, Casper Friis
    Andersen, Mikkel Osterheden
    Carreon, Leah Yacat
    Eiskjaer, Soren
    GLOBAL SPINE JOURNAL, 2022, 12 (05) : 866 - 876
  • [35] Alzheimer's disease diagnosis from single and multimodal data using machine and deep learning models: Achievements and future directions
    Elazab, Ahmed
    Wang, Changmiao
    Abdelaziz, Mohammed
    Zhang, Jian
    Gu, Jason
    Gorriz, Juan M.
    Zhang, Yudong
    Chang, Chunqi
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 255
  • [36] Predicting Online Video Advertising Effects with Multimodal Deep Learning
    Ikeda, Jun
    Seshimet, Hiroyuki
    Wang, Xueting
    Yamasaki, Toshihiko
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 2995 - 3002
  • [37] Research progress on electronic health records multimodal data fusion based on deep learning
    Fan, Yong
    Zhang, Zhengbo
    Wang, Jing
    Shengwu Yixue Gongchengxue Zazhi/Journal of Biomedical Engineering, 2024, 41 (05): : 1062 - 1071
  • [38] Predicting adolescent suicidal behavior following inpatient discharge using structured and unstructured data
    Carson, Nicholas J.
    Yang, Xinyu
    Mullin, Brian
    Stettenbauer, Elizabeth
    Waddington, Marin
    Zhang, Alice
    Williams, Peyton
    Perez, Gabriel E. Rios
    Le Cook, Benjamin
    JOURNAL OF AFFECTIVE DISORDERS, 2024, 350 : 382 - 387
  • [39] A Hybrid Deep Learning Emotion Classification System Using Multimodal Data
    Kim, Dong-Hwi
    Son, Woo-Hyeok
    Kwak, Sung-Shin
    Yun, Tae-Hyeon
    Park, Ji-Hyeok
    Lee, Jae-Dong
    SENSORS, 2023, 23 (23)
  • [40] Predicting postoperative delirium after microvascular decompression surgery with machine learning
    Wang, Ying
    Lei, Lei
    Ji, Muhuo
    Tong, Jianhua
    Zhou, Cheng-Mao
    Yang, Jian-Jun
    JOURNAL OF CLINICAL ANESTHESIA, 2020, 66