A machine learning approach for predicting perihematomal edema expansion in patients with intracerebral hemorrhage

被引:6
|
作者
Chen, Yihao [1 ]
Qin, Chenchen [2 ]
Chang, Jianbo [1 ]
Lyu, Yan [1 ]
Zhang, Qinghua [3 ]
Ye, Zeju [4 ]
Li, Zhaojian [5 ,6 ]
Tian, Fengxuan [7 ]
Ma, Wenbin [1 ]
Wei, Junji [1 ]
Feng, Ming [1 ]
Yao, Jianhua [2 ]
Wang, Renzhi [1 ]
机构
[1] Chinese Acad Med Sci, Peking Union Med Coll Hosp, Peking Union Med Coll, Dept Neurosurg, Beijing 100730, Peoples R China
[2] Tencent AI Lab, Bldg 12A 28th Floor,Ecol Pk, Shenzhen 518000, Peoples R China
[3] Shenzhen Nanshan Hosp, Dept Neurosurg, Shenzhen, Peoples R China
[4] Dongguan Peoples Hosp, Dept Neurosurg, Dongguan, Guangdong, Peoples R China
[5] Qingdao Univ, Dept Neurosurg, Affiliated Hosp, Qingdao, Peoples R China
[6] Qingdao Univ, Dept Med, Qingdao, Peoples R China
[7] Qinghai Prov Peoples Hosp, Dept Neurosurg, Xining, Qinghai, Peoples R China
基金
国家重点研发计划;
关键词
Cerebral hemorrhage; Brain edema; Machine learning; Computer-assisted diagnosis; NATURAL-HISTORY; RADIOMICS;
D O I
10.1007/s00330-022-09311-3
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
ObjectivesPreventing the expansion of perihematomal edema (PHE) represents a novel strategy for the improvement of neurological outcomes in intracerebral hemorrhage (ICH) patients. Our goal was to predict early and delayed PHE expansion using a machine learning approach. MethodsWe enrolled 550 patients with spontaneous ICH to study early PHE expansion, and 389 patients to study delayed expansion. Two imaging researchers rated the shape and density of hematoma in non-contrast computed tomography (NCCT). We trained a radiological machine learning (ML) model, a radiomics ML model, and a combined ML model, using data from radiomics, traditional imaging, and clinical indicators. We then validated these models on an independent dataset by using a nested 4-fold cross-validation approach. We compared models with respect to their predictive performance, which was assessed using the receiver operating characteristic curve. ResultsFor both early and delayed PHE expansion, the combined ML model was most predictive (early/delayed AUC values were 0.840/0.705), followed by the radiomics ML model (0.799/0.663), the radiological ML model (0.779/0.631), and the imaging readers (reader 1: 0.668/0.565, reader 2: 0.700/0.617). ConclusionWe validated a machine learning approach with high interpretability for the prediction of early and delayed PHE expansion. This new technique may assist clinical practice for the management of neurocritical patients with ICH.
引用
收藏
页码:4052 / 4062
页数:11
相关论文
共 50 条
  • [21] Machine learning for predicting hematoma expansion in spontaneous intracerebral hemorrhage: a systematic review and meta-analysis
    Liu, Yihua
    Zhao, Fengfeng
    Niu, Enjing
    Chen, Liang
    NEURORADIOLOGY, 2024, 66 (09) : 1603 - 1616
  • [22] Natural History of Perihematomal Edema and Impact on Outcome After Intracerebral Hemorrhage
    Wu, Teddy Y.
    Sharma, Gagan
    Strbian, Daniel
    Putaala, Jukka
    Desmond, Patricia M.
    Tatlisumak, Turgut
    Davis, Stephen M.
    Meretoja, Atte
    STROKE, 2017, 48 (04) : 873 - 879
  • [23] Fully Automated Segmentation Algorithm for Perihematomal Edema Volumetry After Spontaneous Intracerebral Hemorrhage
    Ironside, Natasha
    Chen, Ching-Jen
    Mutasa, Simukayi
    Sim, Justin L.
    Ding, Dale
    Marfatiah, Saurabh
    Roh, David
    Mukherjee, Sugoto
    Johnston, Karen C.
    Southerland, Andrew M.
    Mayer, Stephan A.
    Lignelli, Angela
    Connolly, Edward Sander
    STROKE, 2020, 51 (03) : 815 - 823
  • [24] Neutrophil-Lymphocyte Ratio and Perihematomal Edema Growth in Intracerebral Hemorrhage
    Gusdon, Aaron M.
    Gialdini, Gino
    Kone, Gbambele
    Baradaran, Hediyeh
    Merkler, Alexander E.
    Mangat, Halinder S.
    Navi, Babak B.
    Iadecola, Costantino
    Gupta, Ajay
    Kamel, Hooman
    Murthy, Santosh B.
    STROKE, 2017, 48 (09) : 2589 - +
  • [25] The risk factors and prognosis of delayed perihematomal edema in patients with spontaneous intracerebral hemorrhage
    Peng, Wen-jie
    Li, Qian
    Tang, Jin-hua
    Reis, Cesar
    Araujo, Camila
    Feng, Rui
    Yuan, Ming-hao
    Jin, Lin-yan
    Cheng, Ya-li
    Jia, Yan-jie
    Luo, Ye-tao
    Zhang, John
    Yang, Jun
    CNS NEUROSCIENCE & THERAPEUTICS, 2019, 25 (10) : 1189 - 1194
  • [26] Spreading depolarizations in patients with spontaneous intracerebral hemorrhage: Association with perihematomal edema progression
    Helbok, Raimund
    Schiefecker, Alois Josef
    Friberg, Christian
    Beer, Ronny
    Kofler, Mario
    Rhomberg, Paul
    Unterberger, Iris
    Gizewski, Elke
    Hauerberg, John
    Moller, Kirsten
    Lackner, Peter
    Broessner, Gregor
    Pfausler, Bettina
    Ortler, Martin
    Thome, Claudius
    Schmutzhard, Erich
    Fabricius, Martin
    JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2017, 37 (05): : 1871 - 1882
  • [27] Perihematomal Edema Is Greater in the Presence of a Spot Sign but Does Not Predict Intracerebral Hematoma Expansion
    Rodriguez-Luna, David
    Stewart, Teri
    Dowlatshahi, Dar
    Kosior, Jayme C.
    Aviv, Richard I.
    Molina, Carlos A.
    Silva, Yolanda
    Dzialowski, Imanuel
    Lum, Cheemun
    Czlonkowska, Anna
    Boulanger, Jean-Martin
    Kase, Carlos S.
    Gubitz, Gord
    Bhatia, Rohit
    Padma, Vasantha
    Roy, Jayanta
    Subramaniam, Suresh
    Hill, Michael D.
    Demchuk, Andrew M.
    STROKE, 2016, 47 (02) : 350 - 355
  • [28] The relationship between perihematomal edema and hematoma expansion in acute spontaneous intracerebral hemorrhage: an exploratory radiomics analysis study
    Zhou, Zhiming
    Wu, Xiaojia
    Chen, Yuanyuan
    Tan, Yuanxin
    Zhou, Yu
    Huang, Tianxing
    Zhou, Hongli
    Lai, Qi
    Guo, Dajing
    FRONTIERS IN NEUROSCIENCE, 2024, 18
  • [29] Significance of perihematomal edema in acute intracerebral hemorrhage The INTERACT trial
    Arima, H.
    Wang, J. G.
    Huang, Y.
    Heeley, E.
    Skulina, C.
    Parsons, M. W.
    Peng, B.
    Li, Q.
    Su, S.
    Tao, Q. L.
    Li, Y. C.
    Jiang, J. D.
    Tai, L. W.
    Zhang, J. L.
    Xu, E.
    Cheng, Y.
    Morgenstern, L. B.
    Chalmers, J.
    Anderson, C. S.
    NEUROLOGY, 2009, 73 (23) : 1963 - 1968
  • [30] Classification mechanism and clinical analysis of perihematomal edema in intracerebral hemorrhage
    Xie, Shuhua
    Qin, Zhengfang
    Yin, Xiaoping
    BRAIN HEMORRHAGES, 2020, 1 (03): : 141 - 145