Singularity for a nonlinear degenerate hyperbolic-parabolic coupled system arising from nematic liquid crystals

被引:6
作者
Hu, Yanbo [1 ,2 ]
机构
[1] Zhejiang Univ Sci & Technol, Dept Math, Hangzhou 310023, Peoples R China
[2] Hangzhou Normal Univ, Sch Math, Hangzhou 311121, Peoples R China
基金
中国国家自然科学基金;
关键词
hyperbolic-parabolic coupled system; singularity; characteristic method; VARIATIONAL WAVE-EQUATION; 2ND SOUND EQUATION; CONSERVATIVE SOLUTIONS; WEAK SOLUTIONS; EXISTENCE; FLOW; REGULARITY; UNIQUENESS;
D O I
10.1515/anona-2022-0268
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article focuses on the singularity formation of smooth solutions for a one-dimensional nonlinear degenerate hyperbolic-parabolic coupled system originating from the Poiseuille flow of nematic liquid crystals. Without assuming that the wave speed of the hyperbolic equation is a positive function, we show that its smooth solution will break down in finite time even for an arbitrarily small initial energy. Based on an estimate of the solution for the heat equation, we use the method of characteristics to control the wave speed and its derivative so that the wave speed does not degenerate and its derivative does not change sign in a period of time.
引用
收藏
页数:11
相关论文
共 28 条
  • [1] Chemically induced twist-bend nematic liquid crystals, liquid crystal dimers, and negative elastic constants
    Adlem, K.
    Copic, M.
    Luckhurst, G. R.
    Mertelj, A.
    Parri, O.
    Richardson, R. M.
    Snow, B. D.
    Timimi, B. A.
    Tuffin, R. P.
    Wilkes, D.
    [J]. PHYSICAL REVIEW E, 2013, 88 (02):
  • [2] Conservative solutions to a nonlinear variational wave equation
    Bressan, Alberto
    Zheng, Yuxi
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 266 (02) : 471 - 497
  • [3] Lipschitz Metrics for a Class of Nonlinear Wave Equations
    Bressan, Alberto
    Chen, Geng
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2017, 226 (03) : 1303 - 1343
  • [4] Generic regularity of conservative solutions to a nonlinear wave equation
    Bressan, Alberto
    Chen, Geng
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2017, 34 (02): : 335 - 354
  • [5] Unique Conservative Solutions to a Variational Wave Equation
    Bressan, Alberto
    Chen, Geng
    Zhang, Qingtian
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2015, 217 (03) : 1069 - 1101
  • [6] Uniqueness and regularity of conservative solution to a wave system modeling nematic liquid crystal
    Cai, Hong
    Chen, Geng
    Du, Yi
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2018, 117 : 185 - 220
  • [7] Liquid crystal flow: Dynamic and static configurations
    Calderer, MC
    Liu, C
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 2000, 60 (06) : 1925 - 1949
  • [8] Poiseuille Flow of Nematic Liquid Crystals via the Full Ericksen-Leslie Model
    Chen, Geng
    Huang, Tao
    Liu, Weishi
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2020, 236 (02) : 839 - 891
  • [9] Singularity and existence for a wave system of nematic liquid crystals
    Chen, Geng
    Zheng, Yuxi
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 398 (01) : 170 - 188
  • [10] CONSERVATION LAWS FOR LIQUID CRYSTALS
    ERICKSEN, JL
    [J]. TRANSACTIONS OF THE SOCIETY OF RHEOLOGY, 1961, 5 : 23 - 34