Evaluation of QSAR models for predicting mutagenicity: outcome of the Second Ames/QSAR international challenge project

被引:7
作者
Furuhama, A. [1 ]
Kitazawa, A. [1 ]
Yao, J. [2 ]
dos Santos, Matos C. E. [3 ]
Rathman, J. [4 ,5 ]
Yang, C. [4 ,5 ]
Ribeiro, J. V. [4 ,5 ]
Cross, K. [6 ]
Myatt, G. [6 ]
Raitano, G. [7 ]
Benfenati, E. [7 ]
Jeliazkova, N. [8 ]
Saiakhov, R. [9 ]
Chakravarti, S. [9 ]
Foster, R. S. [10 ]
Bossa, C. [11 ]
Battistelli, C. Laura [11 ]
Benigni, R. [11 ,12 ]
Sawada, T. [13 ,14 ]
Wasada, H. [13 ]
Hashimoto, T. [13 ]
Wu, M. [15 ]
Barzilay, R. [15 ]
Daga, P. R. [16 ]
Clark, R. D. [16 ]
Mestres, J. [17 ]
Montero, A. [17 ]
Gregori-Puigjane, E. [17 ]
Petkov, P. [18 ]
Ivanova, H. [18 ]
Mekenyan, O. [18 ]
Matthews, S. [19 ]
Guan, D. [19 ]
Spicer, J. [19 ]
Lui, R. [19 ]
Uesawa, Y. [20 ]
Kurosaki, K. [20 ]
Matsuzaka, Y. [20 ]
Sasaki, S. [20 ]
Cronin, M. T. D. [21 ]
Belfield, S. J. [21 ]
Firman, J. W. [21 ]
Spinu, N. [21 ]
Qiu, M. [22 ]
Keca, J. M. [22 ]
Gini, G. [23 ]
Li, T. [24 ]
Tong, W. [24 ]
Hong, H. [24 ]
Liu, Z. [24 ,25 ]
机构
[1] NIHS, Kawasaki, Japan
[2] Chinese Acad Sci, SIOC, Key Lab Fluorine & Nitrogen Chem, Shanghai, Peoples R China
[3] Altox Ltd, Dept Computat Toxicol & Silico Innovat, Sao Paulo, SP, Brazil
[4] MN AM, Nurnberg, Germany
[5] MN AM, Columbus, OH USA
[6] Instem, In Silico Dept, Conshohocken, PA USA
[7] IRCCS, IRFMN, Lab Environm Toxicol & Chem, Dept Environm Hlth Sci, Milan, Italy
[8] Ideaconsult Ltd, Sofia, Bulgaria
[9] MultiCASE Inc, Mayfield Height, OH USA
[10] Lhasa Ltd, Leeds, England
[11] ISS, Environm & Hlth Dept, Rome, Italy
[12] Alpha Pretox, Rome, Italy
[13] Gifu Univ, Fac Regional Studies, Gifu, Japan
[14] XenoBiotic Inc, Gifu, Japan
[15] MIT, Cambridge, MA USA
[16] Simulat Plus, Lancaster, CA USA
[17] Chemotargets, Barcelona, Spain
[18] Bourgas Univ, LMC, Burgas, Bulgaria
[19] Univ Sydney, Sch Pharm, Fac Med & Hlth, Computat Pharmacol Toxicol Lab,Discipline Pharmac, Sydney, NSW, Australia
[20] Meiji Pharmaceut Univ, Dept Med Mol Informat, Tokyo, Japan
[21] Liverpool John Moores Univ, Sch Pharm & Biomol Sci, Liverpool, Merseyside, England
[22] Evergreen AI Inc, Toronto, ON, Canada
[23] Politecn Milan, DEIB, Milan, Italy
[24] US FDA, Div Bioinformat & Biostat, NCTR, Jefferson, AR USA
[25] Boehringer Ingelheim Pharmaceut Inc, Integrat Toxicol, Nonclin Drug Safety, Ridgefield, CT USA
[26] Natl Inst Biomed Innovat Hlth & Nutr NIBIOHN, Artificial Intelligence Ctr Hlth & Biomed Res, Osaka, Japan
关键词
Ames mutagenicity prediction; ANEI-HOU new chemical; sensitivity; Ames/QSAR International Challenge Projects; imbalanced toxicity data; model performance; AMES TEST; DATABASES;
D O I
10.1080/1062936X.2023.2284902
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Quantitative structure-activity relationship (QSAR) models are powerful in silico tools for predicting the mutagenicity of unstable compounds, impurities and metabolites that are difficult to examine using the Ames test. Ideally, Ames/QSAR models for regulatory use should demonstrate high sensitivity, low false-negative rate and wide coverage of chemical space. To promote superior model development, the Division of Genetics and Mutagenesis, National Institute of Health Sciences, Japan (DGM/NIHS), conducted the Second Ames/QSAR International Challenge Project (2020-2022) as a successor to the First Project (2014-2017), with 21 teams from 11 countries participating. The DGM/NIHS provided a curated training dataset of approximately 12,000 chemicals and a trial dataset of approximately 1,600 chemicals, and each participating team predicted the Ames mutagenicity of each trial chemical using various Ames/QSAR models. The DGM/NIHS then provided the Ames test results for trial chemicals to assist in model improvement. Although overall model performance on the Second Project was not superior to that on the First, models from the eight teams participating in both projects achieved higher sensitivity than models from teams participating in only the Second Project. Thus, these evaluations have facilitated the development of QSAR models.
引用
收藏
页码:983 / 1001
页数:19
相关论文
共 21 条
  • [1] Effective data-balancing methods for class-imbalanced genotoxicity datasets using machine learning algorithms and molecular fingerprints
    Bae, Su-Yong
    Lee, Jonga
    Jeong, Jaeseong
    Lim, Changwon
    Choi, Jinhee
    [J]. COMPUTATIONAL TOXICOLOGY, 2021, 20
  • [2] Evaluation of a statistics-based Ames mutagenicity QSAR model and interpretation of the results obtained
    Barber, Chris
    Cayley, Alex
    Hanser, Thierry
    Harding, Alex
    Heghes, Crina
    Vessey, Jonathan D.
    Werner, Stephane
    Weiner, Sandy K.
    Wichard, Joerg
    Giddings, Amanda
    Glowienke, Susanne
    Parenty, Alexis
    Brigo, Alessandro
    Spirkl, Hans-Peter
    Amberg, Alexander
    Kemper, Ray
    Greene, Nigel
    [J]. REGULATORY TOXICOLOGY AND PHARMACOLOGY, 2016, 76 : 7 - 20
  • [3] Benigni R., 2019, EFSA Supporting Publications, V16, p1598E, DOI 10.2903/sp.efsa.2019.en-1598
  • [4] New perspectives in toxicological information management, and the role of ISSTOX databases in assessing chemical mutagenicity and carcinogenicity
    Benigni, Romualdo
    Battistelli, Chiara Laura
    Bossa, Cecilia
    Tcheremenskaia, Olga
    Crettaz, Pierre
    [J]. MUTAGENESIS, 2013, 28 (04) : 401 - 409
  • [5] Furuhama A., 2023, QSAR SAFETY EVALUATI, P365, DOI [10.1016/B978-0-443-15339-6.00022-9, DOI 10.1016/B978-0-443-15339-6.00022-9]
  • [6] Statistical learning algorithms for dendritic neuron model artificial neural network based on sine cosine algorithm
    Gul, Hasan Huseyin
    Egrioglu, Erol
    Bas, Eren
    [J]. INFORMATION SCIENCES, 2023, 629 : 398 - 412
  • [7] Benchmark Data Set for in Silico Prediction of Ames Mutagenicity
    Hansen, Katja
    Mika, Sebastian
    Schroeter, Timon
    Sutter, Andreas
    ter Laak, Antonius
    Steger-Hartmann, Thomas
    Heinrich, Nikolaus
    Mueller, Klaus-Robert
    [J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2009, 49 (09) : 2077 - 2081
  • [8] Comparative Evaluation of in Silico Systems for Ames Test Mutagenicity Prediction: Scope and Limitations
    Hillebrecht, Alexander
    Muster, Wolfgang
    Brigo, Alessandro
    Kansy, Manfred
    Weiser, Thomas
    Singer, Thomas
    [J]. CHEMICAL RESEARCH IN TOXICOLOGY, 2011, 24 (06) : 843 - 854
  • [9] Improvement of quantitative structure-activity relationship (QSAR) tools for predicting Ames mutagenicity: outcomes of the Ames/QSAR International Challenge Project
    Honma, Masamitsu
    Kitazawa, Airi
    Cayley, Alex
    Williams, Richard V.
    Barber, Chris
    Hanser, Thierry
    Saiakhov, Roustem
    Chakravarti, Suman
    Myatt, Glenn J.
    Cross, Kevin P.
    Benfenati, Emilio
    Raitano, Giuseppa
    Mekenyan, Ovanes
    Petkov, Petko
    Bossa, Cecilia
    Benigni, Romualdo
    Battistelli, Chiara Laura
    Giuliani, Alessandro
    Tcheremenskaia, Olga
    DeMeo, Christine
    Norinder, Ulf
    Koga, Hiromi
    Jose, Ciloy
    Jeliazkova, Nina
    Kochev, Nikolay
    Paskaleva, Vesselina
    Yang, Chihae
    Daga, Pankaj R.
    Clark, Robert D.
    Rathman, James
    [J]. MUTAGENESIS, 2019, 34 (01) : 3 - 16
  • [10] ich, ICH M7 R1 ICH HARMON