Development of CO2-integrated 3D printing concrete

被引:14
|
作者
Li, Long [1 ,2 ,3 ]
Hao, Lucen [1 ,2 ,3 ]
Li, Xiaosheng [2 ,3 ]
Xiao, Jianzhuang [1 ]
Zhang, Shipeng [2 ,3 ]
Poon, Chi Sun [2 ,3 ]
机构
[1] Tongji Univ, Dept Struct Engn, Shanghai 200092, Peoples R China
[2] Hong Kong Polytech Univ, Dept Civil & Environm Engn, Hong Kong, Peoples R China
[3] Hong Kong Polytech Univ, Res Ctr Resources Engn Carbon Neutral, Hong Kong, Peoples R China
关键词
3D printing concrete (3DPC); CO; 2; mixing; Rheological properties; Mechanical properties; Buildability; PORE STRUCTURE; PORTLAND-CEMENT; HYDRATION; CARBONATION; SHRINKAGE; LIMESTONE; STRENGTH; C(3)A; CO2; C3S;
D O I
10.1016/j.conbuildmat.2023.134233
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
3D printing concrete (3DPC) technology is a promising technique for construction due to its advantages such as no formwork is needed, fast production, automation, and high architectural freedom. However, the layer-bylayer extrusion method has stricter requirements on the rheological properties of concrete. One of challenges of this technology is how to improve the rheological properties of concrete to satisfy the conflicting requirements during pumping and after extrusion. This study proposed to use CO(2)as accelerator and rheology modifier by injecting CO2 during secondary mixing to improve the rheological and mechanical properties of 3DPC. The influences of the secondary CO2 mixing on the properties of poured concrete and 3DPC were investigated. After using the secondary CO2 mixing, the setting time and workability of concrete were reduced, which contributed to the significantly improved buildability of 3DPC. This was because CO2 accelerated the hydration of tricalcium aluminate (C3A) and tricalcium silicate (C3S) during the secondary mixing. After that, they were continuously accelerated by the calcium carbonate formed during CO2 mixing. Also, the compressive strength of poured concrete was enhanced by the secondary CO(2)mixing because it reduced the volume of larger pores (>200 nm) and promoted the formation of calcium silicate hydrates (C-S-H), which simultaneously slightly increased the drying shrinkage. In addition, after using the secondary CO2 mixing, the compressive strength and interlayer bond strength of 3DPC was enhanced.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Technologies for improving buildability in 3D concrete printing
    Muthukrishnan, Shravan
    Ramakrishnan, Sayanthan
    Sanjayan, Jay
    CEMENT & CONCRETE COMPOSITES, 2021, 122
  • [2] Carbon capture and sequestration with in-situ CO2 and steam integrated 3D concrete printing
    Lim, Sean Gip
    Tay, Yi Wei Daniel
    Paul, Suvash Chandra
    Lee, Junghyun
    Amr, Issam T.
    Fadhel, Bandar A.
    Jamal, Aqil
    Al-Khowaiter, Ahmad O.
    Tan, Ming Jen
    CARBON CAPTURE SCIENCE & TECHNOLOGY, 2024, 13
  • [3] Sustainable materials for 3D concrete printing
    Bhattacherjee, Shantanu
    Basavaraj, Anusha S.
    Rahul, A. V.
    Santhanam, Manu
    Gettu, Ravindra
    Panda, Biranchi
    Schlangen, Erik
    Chen, Yu
    Copuroglu, Oguzhan
    Ma, Guowei
    Wang, Li
    Beigh, Mirza Abdul Basit
    Mechtcherine, Viktor
    CEMENT & CONCRETE COMPOSITES, 2021, 122
  • [4] Development of CO2 curable 3D printing materials
    Zhong, Kuangnan
    Liu, Zhichao
    Wang, Fazhou
    ADDITIVE MANUFACTURING, 2023, 65
  • [5] Correlation between thixotropic behavior and buildability for 3D concrete printing
    Lee, Keon-Woo
    Lee, Ho-Jae
    Choi, Myoung-Sung
    CONSTRUCTION AND BUILDING MATERIALS, 2022, 347
  • [6] Cement Composites with Carbon-based Nanomaterials for 3D Concrete Printing Applications - A Review
    Basha, Shaik Inayath
    Rehman, Atta Ur
    Aziz, Md. Abdul
    Kim, Jung-Hoon
    CHEMICAL RECORD, 2023, 23 (04)
  • [7] 3D Printing of Concrete-Geopolymer Hybrids
    Ziejewska, Celina
    Marczyk, Joanna
    Korniejenko, Kinga
    Bednarz, Sebastian
    Sroczyk, Piotr
    Lach, Michal
    Mikula, Janusz
    Figiela, Beata
    Szechynska-Hebda, Magdalena
    Hebda, Marek
    MATERIALS, 2022, 15 (08)
  • [8] Framework of 3D Concrete Printing Potential and Challenges
    Al-Tamimi, Adil K. K.
    Alqamish, Habib H. H.
    Khaldoune, Ahlam
    Alhaidary, Haidar
    Shirvanimoghaddam, Kamyar
    BUILDINGS, 2023, 13 (03)
  • [9] Printing performance of 3D printing cement-based materials containing steel slag
    Zhu, Lingli
    Yang, Zhang
    Zhao, Yu
    Wu, Xikai
    Guan, Xuemao
    ADVANCES IN CONCRETE CONSTRUCTION, 2022, 13 (04) : 281 - 289
  • [10] 3D concrete printing of permanent formwork for concrete column construction
    Zhu, Binrong
    Nematollahi, Behzad
    Pan, Jinlong
    Zhang, Yang
    Zhou, Zhenxin
    Zhang, Yamei
    CEMENT & CONCRETE COMPOSITES, 2021, 121