High efficiency of boron doping and fast growth realized with a novel gas inlet structure in diamond microwave plasma chemical vapor deposition system

被引:3
作者
Teng, Yan [1 ]
Zhao, Weikang [1 ]
Tang, Kun [1 ]
Yang, Kai [1 ]
Zhao, Gengyou [1 ]
Zhu, Shunming [1 ]
Ye, Jiandong [1 ]
Gu, Shulin [1 ]
机构
[1] Nanjing Univ, Coll Elect Sci & Engn, Nanjing 210023, Peoples R China
基金
中国国家自然科学基金;
关键词
MPCVD; Diamond; Boron; Doping efficiency; DOPED DIAMOND; FILMS; QUALITY; SUBSTRATE;
D O I
10.1007/s42823-023-00651-8
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this work, we have designed a novel gas inlet structure for efficient usage of growth and doping precursors. Our previous gas injection configuration is that the gas is mixed to one pipe first, then divided into two pipes, and finally entered the chamber symmetrically above the substrate without a jet nozzle. The distance between gas inlet and substrate is about 14.75 cm. Our new design is to add a new tube in the center of the susceptor, and the distance between the new tube and substrate is about 0.5 cm. In this new design, different gas injection configurations have been planned such that the gas flow in the reactor aids the transport of reaction species toward the sample surface, expecting the utilization efficiency of the precursors being improved in this method. Experiments have shown that a high doping efficiency and fast growth could be achieved concurrently in diamond growth when methane and diborane come from this new inlet, demonstrating a successful implementation of the design to a diamond microwave plasma chemical vapor deposition system. Compared to our previous gas injection configuration, the growth rate increases by 15-fold and the boron concentration increases by similar to 10 times. COMSOL simulation has shown that surface reaction and precursor supply both have a change in determining the growth rate and doping concentration. The current results could be further applied to other dopants for solving the low doping efficiency problems in ultra-wide-band-gap semiconductor materials.
引用
收藏
页码:1115 / 1128
页数:14
相关论文
共 43 条
  • [41] Electronic properties of homoepitaxial (111) highly boron-doped diamond films
    Ye, Haitao
    Tumilty, Niall
    Bevilacqua, Mose
    Curat, Stephane
    Nesladek, Milos
    Bazin, Bertrand
    Bergonzo, Philippe
    Jackman, Richard B.
    [J]. JOURNAL OF APPLIED PHYSICS, 2008, 103 (05)
  • [42] Effect of CVD diamond growth by doping with nitrogen
    Yiming, Z.
    Larsson, F.
    Larsson, K.
    [J]. THEORETICAL CHEMISTRY ACCOUNTS, 2013, 133 (02) : 1 - 12
  • [43] Recent progress in diamond-based MOSFETs
    Yuan, Xiao-lu
    Zheng, Yu-ting
    Zhu, Xiao-hua
    Liu, Jin-long
    Liu, Jiang-wei
    Li, Cheng-ming
    Jin, Peng
    Wang, Zhan-guo
    [J]. INTERNATIONAL JOURNAL OF MINERALS METALLURGY AND MATERIALS, 2019, 26 (10) : 1195 - 1205