On Metric Dimension of Circulant Graph Cn(1, 2) Joining n-paths

被引:0
作者
Sharma, Sunny Kumar [1 ]
Bhat, Vijay Kumar
机构
[1] Manipal Acad Higher Educ, Manipal Inst Technol Bengaluru, Dept Math, Manipal, Karnataka, India
关键词
Circulant graph; Metric dimension; Resolving set; Pendant vertices; Pen-dant edges; FAMILIES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let H = H(V, E) be a graph. A subset of vertices M in V (H) is said to be are solving set (or metric generator) for H if every y, z is an element of V (H) with y not equal z, there existsa vertex a is an element of M such that d (a, y) not equal d(a, z). A metric generator containing a minimum number of vertices is called a metric basis for Hand the cardinality of this metric basis is the metric dimension of H, denoted by d(m)(i)(H). Let C-n(q)(1,2) be a graph obtained from the circulant graph Cn(1,2) by joining n-paths of length q at each vertex of the graph C-n(1,2). In this work, we show that the metric dimension of the graph C-n(q)(1,2)is three when n equivalent to 0,2,3mod(4) and four whenn equivalent to 1mod(4).
引用
收藏
页码:835 / 843
页数:9
相关论文
共 18 条
[1]   Network discovery and verification [J].
Beerliova, Zuzana ;
Eberhard, Felix ;
Erlebach, Thomas ;
Hall, Alexander ;
Hoffmann, Michael ;
Mihal'ak, Matus ;
Ram, L. Shankar .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2006, 24 (12) :2168-2181
[2]  
Borchert A, 2018, UTILITAS MATHEMATICA, V106, P125
[3]  
Buczkowski P.S., 2003, PERIOD MATH HUNGAR, V46, P9, DOI [10.1023/A:1025745406160, DOI 10.1023/A:1025745406160]
[4]   Resolvability in graphs and the metric dimension of a graph [J].
Chartrand, G ;
Eroh, L ;
Johnson, MA ;
Oellermann, OR .
DISCRETE APPLIED MATHEMATICS, 2000, 105 (1-3) :99-113
[5]  
Harary F., 1976, Ars Combin, V2, P191
[6]  
Imran M, 2012, SE ASIAN B MATH, V36, P663
[7]   On the metric dimension of circulant graphs [J].
Imran, Muhammad ;
Baig, A. Q. ;
Bokhary, Syed Ahtsham Ul Haq ;
Javaid, Imran .
APPLIED MATHEMATICS LETTERS, 2012, 25 (03) :320-325
[8]  
Javaid I, 2008, UTILITAS MATHEMATICA, V75, P21
[9]   Landmarks in graphs [J].
Khuller, S ;
Raghavachari, B ;
Rosenfeld, A .
DISCRETE APPLIED MATHEMATICS, 1996, 70 (03) :217-229
[10]   METRIC BASES IN DIGITAL GEOMETRY [J].
MELTER, RA ;
TOMESCU, I .
COMPUTER VISION GRAPHICS AND IMAGE PROCESSING, 1984, 25 (01) :113-121