Task Offloading and Resource Allocation in IoT Based Mobile Edge Computing Using Deep Learning

被引:8
作者
Abdullaev, Ilyos [1 ]
Prodanova, Natalia [2 ]
Bhaskar, K. Aruna [3 ]
Lydia, E. Laxmi [4 ]
Kadry, Seifedine [5 ,6 ,7 ]
Kim, Jungeun [8 ]
机构
[1] Urgench State Univ, Fac Econ, Dept Management & Mkt, Urganch 220100, Uzbekistan
[2] Plekhanov Russian Univ Econ, Basic Dept Financial Control, Anal & Audit Moscow Main Control Dept, Moscow 117997, Russia
[3] KL Deemed Univ, Dept Comp Sci & Engn, Guntur, Andhra Pradesh, India
[4] GMR Inst Technol, Dept Comp Sci & Engn, Rajam, Andhra Pradesh, India
[5] Noroff Univ Coll, Dept Appl Data Sci, Kristiansand, Norway
[6] Ajman Univ, Artificial Intelligence Res Ctr AIRC, Ajman 346, U Arab Emirates
[7] Lebanese Amer Univ, Dept Elect & Comp Engn, Byblos, Lebanon
[8] Kongju Natl Univ, Dept Software, Cheonan 31080, South Korea
来源
CMC-COMPUTERS MATERIALS & CONTINUA | 2023年 / 76卷 / 02期
关键词
Mobile edge computing; seagull optimization; deep belief network; resource management; parameter tuning; INTERNET; THINGS;
D O I
10.32604/cmc.2023.038417
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recently, computation offloading has become an effective method for overcoming the constraint of a mobile device (MD) using computation-intensive mobile and offloading delay-sensitive application tasks to the remote cloud-based data center. Smart city benefitted from offloading to edge point. Consider a mobile edge computing (MEC) network in multiple regions. They comprise N MDs and many access points, in which every MD has M independent real-time tasks. This study designs a new Task Offloading and Resource Allocation in IoT-based MEC using Deep Learning with Seagull Optimization (TORA-DLSGO) algorithm. The proposed TORA-DLSGO technique addresses the resource management issue in the MEC server, which enables an optimum offloading decision to minimize the system cost. In addition, an objective function is derived based on minimizing energy consumption subject to the latency requirements and restricted resources. The TORA-DLSGO technique uses the deep belief network (DBN) model for optimum offloading decision-making. Finally, the SGO algorithm is used for the parameter tuning of the DBN model. The simulation results exemplify that the TORA-DLSGO technique outperformed the existing model in reducing client overhead in the MEC systems with a maximum reward of 0.8967.
引用
收藏
页码:1463 / 1477
页数:15
相关论文
共 25 条
  • [1] Fusion-Based Deep Learning with Nature-Inspired Algorithm for Intracerebral Haemorrhage Diagnosis
    Alfaer, Nada M.
    Aljohani, Hassan M.
    Abdel-Khalek, Sayed.
    Alghamdi, Abdulaziz S.
    Mansour, Romany F.
    [J]. JOURNAL OF HEALTHCARE ENGINEERING, 2022, 2022
  • [2] Task Offloading and Resource Allocation for Mobile Edge Computing by Deep Reinforcement Learning Based on SARSA
    Alfakih, Taha
    Hassan, Mohammad Mehedi
    Gumaei, Abdu
    Savaglio, Claudio
    Fortino, Giancarlo
    [J]. IEEE ACCESS, 2020, 8 : 54074 - 54084
  • [3] Multiuser Computation Offloading and Resource Allocation for Cloud-Edge Heterogeneous Network
    Chen, Qinglin
    Kuang, Zhufang
    Zhao, Lian
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (05) : 3799 - 3811
  • [4] Federated Deep Reinforcement Learning-Based Task Offloading and Resource Allocation for Smart Cities in a Mobile Edge Network
    Chen, Xing
    Liu, Guizhong
    [J]. SENSORS, 2022, 22 (13)
  • [5] Task offloading for vehicular edge computing with edge-cloud cooperation
    Dai, Fei
    Liu, Guozhi
    Mo, Qi
    Xu, WeiHeng
    Huang, Bi
    [J]. WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2022, 25 (05): : 1999 - 2017
  • [6] Intelligent Delay-Aware Partial Computing Task Offloading for Multiuser Industrial Internet of Things Through Edge Computing
    Deng, Xiaoheng
    Yin, Jian
    Guan, Peiyuan
    Xiong, Neal N.
    Zhang, Lan
    Mumtaz, Shahid
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (04) : 2954 - 2966
  • [7] Quantum Particle Swarm Optimization for Task Offloading in Mobile Edge Computing
    Dong, Shi
    Xia, Yuanjun
    Kamruzzaman, Joarder
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (08) : 9113 - 9122
  • [8] DNN Deployment, Task Offloading, and Resource Allocation for Joint Task Inference in IIoT
    Fan, Wenhao
    Chen, Zeyu
    Hao, Zhibo
    Su, Yi
    Wu, Fan
    Tang, Bihua
    Liu, Yuan'an
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (02) : 1634 - 1646
  • [9] Joint Offloading Scheduling and Resource Allocation in Vehicular Edge Computing: A Two Layer Solution
    Gao, Jian
    Kuang, Zhufang
    Gao, Jie
    Zhao, Lian
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (03) : 3999 - 4009
  • [10] UAV-Enhanced Intelligent Offloading for Internet of Things at the Edge
    Guo, Hongzhi
    Liu, Jiajia
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2020, 16 (04) : 2737 - 2746