Edges-enhanced Convolutional Neural Network for Multiple Sclerosis Lesions Segmentation

被引:0
作者
Ulloa-Poblete, Gustavo [1 ]
Allende-Cid, Hector [2 ]
Veloz, Alejandro [3 ]
Allende, Hector [1 ]
机构
[1] Univ Tecn Federico Santa Maria, Valparaiso, Chile
[2] Pontificia Univ Catolica Valparaiso, Valparaiso, Chile
[3] Univ Valparaiso, Valparaiso, Chile
来源
COMPUTACION Y SISTEMAS | 2023年 / 27卷 / 01期
关键词
Convolutional neural networks; focal loss; multiple sclerosis; lesions segmentation; magnetic resonance imaging;
D O I
10.13053/CyS-27-1-4535
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Multiple sclerosis (MS) segmentation is a crucial task that helps to monitor the progression of that condition and to investigate how efficient is the treatment provided to a patient. Convolutional Neural Networks (CNN) have been successfully employed in MS lesion segmentation in recent years, but still have problems in segmenting voxels in the boundaries of the lesions. In this work, we present a modified CNN that assign more importance in learning hard-to-classify voxels close to the boundaries of the MS lesions. During the training process, we performed a stratified sampling to dynamically increase the penalization of voxels in the neighborhood around MS lesions boundaries. We prove that the stratified sampling strategy increases the representation of voxels near to the neighborhood of the edges and retrieves more accurate results in terms of Dice similarity coefficient compared to existing methods that uses uniform sampling. To test our approach, the 2015 Longitudinal MS Lesion Segmentation Challenge dataset was used, obtaining Dice > 0.7, which is comparable to the performance of human experts.
引用
收藏
页码:237 / 245
页数:9
相关论文
共 20 条
  • [1] Future activity prediction of multiple sclerosis with 3D MRI using 3D discrete wavelet transform
    Acar, Zueleyha Yilmaz
    Basciftci, Fatih
    Ekmekci, Ahmet Hakan
    [J]. BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 78
  • [2] A Convolutional Neural Network model for identifying Multiple Sclerosis on brain FLAIR MRI
    Acar, Zuleyha Yilmaz
    Basciftci, Fatih
    Ekmekci, Ahmet Hakan
    [J]. SUSTAINABLE COMPUTING-INFORMATICS & SYSTEMS, 2022, 35
  • [3] Multi-view longitudinal CNN for multiple sclerosis lesion segmentation
    Birenbaum, Ariel
    Greenspan, Hayit
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2017, 65 : 111 - 118
  • [4] Longitudinal multiple sclerosis lesion segmentation: Resource and challenge
    Carass, Aaron
    Roy, Snehashis
    Jog, Amod
    Cuzzocreo, Jennifer L.
    Magrath, Elizabeth
    Gherman, Adrian
    Button, Julia
    Nguyen, James
    Prados, Ferran
    Sudre, Carole H.
    Cardoso, Manuel Jorge
    Cawley, Niamh
    Ciccarelli, Olga
    Wheeler-Kingshott, Claudia A. M.
    Ourselin, Sebastien
    Catanese, Laurence
    Deshpande, Hrishikesh
    Maurel, Pierre
    Commowick, Olivier
    Barillot, Christian
    Tomas-Fernandez, Xavier
    Warfield, Simon K.
    Vaidya, Suthirth
    Chunduru, Abhijith
    Muthuganapathy, Ramanathan
    Krishnamurthi, Ganapathy
    Jesson, Andrew
    Arbel, Tal
    Maier, Oskar
    Handeles, Heinz
    Iheme, Leonardo O.
    Unay, Devrim
    Jain, Saurabh
    Sima, Diana M.
    Smeets, Dirk
    Ghafoorian, Mohsen
    Platel, Bram
    Birenbaum, Ariel
    Greenspan, Hayit
    Bazin, Pierre-Louis
    Calabresi, Peter A.
    Crainiceanu, Ciprian M.
    Ellingsen, Lotta M.
    Reich, Daniel S.
    Prince, Jerry L.
    Pham, Dzung L.
    [J]. NEUROIMAGE, 2017, 148 : 77 - 102
  • [5] Chollet F., 2015, About us
  • [6] Survey of automated multiple sclerosis lesion segmentation techniques on magnetic resonance imaging
    Danelakis, Antonios
    Theoharis, Theoharis
    Verganelakis, Dimitrios A.
    [J]. COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2018, 70 : 83 - 100
  • [7] High-frequency photoacoustic and ultrasound imaging of systemic sclerosis patients
    Daoudi, Khalid
    Kersten, Brigit E.
    Vonk, Madelon
    de Korte, Chris L.
    [J]. OPTO-ACOUSTIC METHODS AND APPLICATIONS IN BIOPHOTONICS IV, 2019, 11077
  • [8] Filippi M, 2018, NAT REV DIS PRIMERS, V4, DOI [10.1038/s41572-018-0041-4, 10.1038/s41572-018-0046-z]
  • [9] Effective Utilization of MRI in the Diagnosis and Management of Multiple Sclerosis
    Giorgio, Antonio
    De Stefano, Nicola
    [J]. NEUROLOGIC CLINICS, 2018, 36 (01) : 27 - +
  • [10] Improved optimization for the robust and accurate linear registration and motion correction of brain images
    Jenkinson, M
    Bannister, P
    Brady, M
    Smith, S
    [J]. NEUROIMAGE, 2002, 17 (02) : 825 - 841