SOME NEW FRACTIONAL INTEGRAL INEQUALITIES FOR (h1, h2)-CONVEX FUNCTIONS

被引:0
|
作者
Han, Xiaoyue [1 ]
Xu, Run [1 ]
机构
[1] Qufu Normal Univ, Sch Math Sci, Qufu, Peoples R China
来源
MATHEMATICAL FOUNDATIONS OF COMPUTING | 2025年 / 8卷 / 01期
关键词
(h(1); h(2))-convex functions; h(2))-concave functions; Hermite-Hadamard integral inequalities; Hermite-Hadamard-Fejer integral inequalities; Atangana-Baleanu integral operators; FEJER TYPE INEQUALITIES; CONVEX-FUNCTIONS;
D O I
10.3934/mfc.2023040
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, some Hermite-Hadamard integral inequalities and Hermite-Hadamard-Fejer integral inequalities involving AtanganaBaleanu fractional integral operators via (h(1), h(2))-convex functions and (h(1), h(2))-concave functions are established. Then, according to an integral equation with AtanganaBaleanu fractional integral operators, some Hermite-Hadamard integral inequalities for second order differentiable convex maps are given.
引用
收藏
页码:89 / 112
页数:24
相关论文
共 50 条
  • [1] Extended Hermite-Hadamard (H - H) and Fejer's inequalities based on (h1, h2, s)-convex functions
    Yasin, Sabir
    Misiran, Masnita
    Omar, Zurni
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2022, 13 (01): : 2885 - 2895
  • [2] HERMITE-HADAMARD TYPE INEQUALITIES FOR HARMONICAL (h1, h2)-CONVEX INTERVAL-VALUED FUNCTIONS
    Liu, Ruonan
    Xu, Run
    MATHEMATICAL FOUNDATIONS OF COMPUTING, 2021, 4 (02): : 89 - 103
  • [3] Some Novel Estimates of Hermite-Hadamard and Jensen Type Inequalities for (h1,h2)-Convex Functions Pertaining to Total Order Relation
    Saeed, Tareq
    Afzal, Waqar
    Shabbir, Khurram
    Treanta, Savin
    de la Sen, Manuel
    MATHEMATICS, 2022, 10 (24)
  • [4] New integral inequalities in the class of functions ( h, m )-convex
    Napoles, J. E.
    Guzman, P. M.
    Bayraktar, B.
    IZVESTIYA OF SARATOV UNIVERSITY MATHEMATICS MECHANICS INFORMATICS, 2024, 24 (02): : 173 - 183
  • [6] Refinements of some fractional integral inequalities for refined (α, h - m)-convex function
    Jung, Chahn Yong
    Farid, Ghulam
    Yasmeen, Hafsa
    Lv, Yu-Pei
    Pecaric, Josip
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01):
  • [7] Some Generalized Fractional Integral Inequalities for Convex Functions with Applications
    Zhao, Dafang
    Ali, Muhammad Aamir
    Promsakon, Chanon
    Sitthiwirattham, Thanin
    FRACTAL AND FRACTIONAL, 2022, 6 (02)
  • [8] Some different types of parameterized inequalities pertaining to generalized (m, h 1, h2) -preinvex functions via generalized fractional integral operators and their applications
    Kashuri, Artion
    Nwaeze, Eze R.
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2021, 24 (04) : 821 - 852
  • [9] Some new k-fractional trapezium-like integral inequalities via generalized relative semi-(r; m, h1, h2)-preinvex mappings and applications
    Kashuri, Artion
    Khan, Muhammad Adil
    Liko, Rozana
    TBILISI MATHEMATICAL JOURNAL, 2019, 12 (03) : 1 - 19
  • [10] Further on Inequalities for (α,h-m)-Convex Functions via k-Fractional Integral Operators
    Yan, Tao
    Farid, Ghulam
    Demirel, Ayse Kuebra
    Nonlaopon, Kamsing
    JOURNAL OF MATHEMATICS, 2022, 2022