The structure of Frobenius kernels for automorphism group schemes

被引:3
作者
Schroeer, Stefan [1 ]
Tziolas, Nikolaos [2 ]
机构
[1] Heinrich Heine Univ, Math Inst, Dusseldorf, Germany
[2] Univ Cyprus, Dept Math & Stat, Nicosia, Cyprus
关键词
automorphism group schemes; restricted lie algebras; surfaces of general type; foliations; VECTOR-FIELDS; LIE-ALGEBRAS; GENERAL TYPE; SURFACES; CLASSIFICATION; SUBALGEBRAS; FORMS;
D O I
10.2140/ant.2023.17.1637
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish structure results for Frobenius kernels of automorphism group schemes for surfaces of general type in positive characteristic. It turns out that there are surprisingly few possibilities. This relies on properties of the famous Witt algebra, which is a simple Lie algebra without finite-dimensional counterpart over the complex numbers, together with its twisted forms. The result actually holds true for arbitrary proper integral schemes under the assumption that the Frobenius kernel has large isotropy group at the generic point. This property is measured by a new numerical invariant called the foliation rank.
引用
收藏
页码:1637 / 1680
页数:45
相关论文
共 61 条
  • [1] [Anonymous], 2016, Amer. Math. Soc. Colloq. Publ., V62, DOI DOI 10.1090/COLL/062
  • [2] ARNOLD VE, 1985, MONOGR MATH, V82
  • [3] Artin M., 1977, Complex Analysis and Algebraic Geometry, P11
  • [4] Artin M., 1969, GLOBAL ANAL, P21
  • [5] Artin M., Yale Math. Monogr., V3
  • [6] Artin M., 1972, LECT NOTES MATH, V270
  • [7] Blanchard A., 1956, ANN SCI ECOLE NORM S, V73, P157
  • [8] CLASSIFICATION OF THE RESTRICTED SIMPLE LIE-ALGEBRAS
    BLOCK, RE
    WILSON, RL
    [J]. JOURNAL OF ALGEBRA, 1988, 114 (01) : 115 - 259
  • [9] Bourbaki N., 1990, Algebra, VII
  • [10] Bourbaki Nicolas, 1989, Elements of Mathematics