Near-Real-Time Estimation of Hourly All-Weather Land Surface Temperature by Fusing Reanalysis Data and Geostationary Satellite Thermal Infrared Data

被引:8
作者
Ding, Lirong [1 ,2 ]
Zhou, Ji [3 ]
Li, Zhao-Liang [2 ,4 ]
Zhu, Xinming [5 ]
Ma, Jin [3 ]
Wang, Ziwei [3 ]
Wang, Wei [3 ]
Tang, Wenbin [3 ]
机构
[1] Univ Elect Sci & Technol China, Sch Resources & Environm, Chengdu 611731, Peoples R China
[2] CNRS, UMR 7357, UdS, ICube,CS 10413, F-10413 Illkirch Graffenstaden, France
[3] Univ Elect Sci & Technol China, Sch Resources & Environm, Chengdu 611731, Peoples R China
[4] Chinese Acad Agr Sci, Inst Agr Resources & Reg Planning, Key Lab Agr Remote Sensing, Minist Agr, Beijing 100081, Peoples R China
[5] Kunming Univ Sci & Technol, Fac Land Resources Engn, Kunming 650093, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2023年 / 61卷
基金
中国国家自然科学基金;
关键词
Land surface temperature; Clouds; Geostationary satellites; Interpolation; Land surface; MODIS; Estimation; All-weather (AW); geostationary satellite; high temporal resolution; land surface temperature (LST); near real time (NRT); PASSIVE MICROWAVE; TIBETAN PLATEAU; SOIL-MOISTURE; BRIGHTNESS TEMPERATURE; RESOLUTION; PRODUCTS; SERIES; RADIATION; MODEL;
D O I
10.1109/TGRS.2023.3313730
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
It is urgently needed to obtain the hourly near-real-time all-weather land surface temperature (NRT-AW LST) for immediately monitoring the disaster and environmental changes. Nevertheless, studies on estimating hourly NRT-AW LST are in the preliminary stage. In this study, we proposed a Spatio-TEmporal Fusion (STEF) method for fusing the reanalysis dataset derived from the China Land Surface Data Assimilation System (CLDAS) and thermal infrared (TIR) data derived from the Chinese Fengyun-4A (FY-4A) geostationary satellite to estimate the hourly NRT-AW LST with 0.04(degrees) resolution. The STEF method can produce NRT-AW LST without relying on the data after the target moment. STEF is tested in the Tibetan Plateau (TP). Validation results on DOY 215-366 of 2020 indicate that STEF has good accuracy: root-mean-square errors (RMSEs) and mean bias error (MBEs) under clear-sky, cloudy-sky, and AW conditions vary from 2.74 K (-1.06 K) to 3.77 K (0.14 K), from 3.31 K (-1.40 K) to 4.46 K (-0.22 K), and from 3.10 K (-1.11 K) to 3.87 K (-0.22 K), respectively. The STEF method can improve the accuracies of FY-4A LST, and RMSEs are reduced by about 0.77-1.82 K. The NRT-AW LSTs estimated by STEF have better accuracies than CLDAS LSTs under AW conditions. The SETF also exhibited similar results in 2021. We believe that the proposed STEF method can meet the requirements of NRT-AW LST estimation and contribute to improving the timeliness of regional monitoring and related parameter estimations.
引用
收藏
页数:18
相关论文
共 73 条
[1]   A thermal-based remote sensing technique for routine mapping of land-surface carbon, water and energy fluxes from field to regional scales [J].
Anderson, M. C. ;
Norman, J. M. ;
Kustas, W. P. ;
Houborg, R. ;
Starks, P. J. ;
Agam, N. .
REMOTE SENSING OF ENVIRONMENT, 2008, 112 (12) :4227-4241
[2]  
Bai LL, 2019, WATER RESOUR RES, V55, P1105, DOI [10.1029/2018WR024162, 10.1029/2018wr024162]
[3]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[4]  
CORNETTE WM, 1993, P SOC PHOTO-OPT INS, V1934, P252, DOI 10.1117/12.154910
[5]  
Cutler A, 2012, ENSEMBLE MACHINE LEARNING: METHODS AND APPLICATIONS, P157, DOI 10.1007/978-1-4419-9326-7_5
[6]  
[丁利荣 Ding Lirong], 2023, [遥感学报, National Remote Sensing Bulletin], V27, P1534
[7]   Reconstruction of Hourly All-Weather Land Surface Temperature by Integrating Reanalysis Data and Thermal Infrared Data From Geostationary Satellites (RTG) [J].
Ding, Lirong ;
Zhou, Ji ;
Li, Zhao-Liang ;
Ma, Jin ;
Shi, Chunxiang ;
Sun, Shuai ;
Wang, Ziwei .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[8]   Downscaling of surface air temperature over the Tibetan Plateau based on DEM [J].
Ding, Lirong ;
Zhou, Ji ;
Zhang, Xiaodong ;
Liu, Shaomin ;
Cao, Ruyin .
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2018, 73 :136-147
[9]   Inversion and Validation of FY-4A Official Land Surface Temperature Product [J].
Dong, Lixin ;
Tang, Shihao ;
Wang, Fuzhou ;
Cosh, Michael ;
Li, Xianxiang ;
Min, Min .
REMOTE SENSING, 2023, 15 (09)
[10]   A Data Fusion Method for Generating Hourly Seamless Land Surface Temperature from Himawari-8 AHI Data [J].
Dong, Shengyue ;
Cheng, Jie ;
Shi, Jiancheng ;
Shi, Chunxiang ;
Sun, Shuai ;
Liu, Weihan .
REMOTE SENSING, 2022, 14 (20)