On the Pythagoras number of the simplest cubic fields

被引:3
作者
Tinkova, Magdalena [1 ,2 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Dept Algebra, Prague 8, Czech Republic
[2] Czech Tech Univ, Fac Informat Technol, Prague 6, Czech Republic
关键词
Pythagoras number; simplest cubic fields; indecomposable inte-; gers; ORDERS;
D O I
10.4064/aa221003-27-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:325 / 354
页数:30
相关论文
共 19 条
[1]  
CHOI MD, 1982, J REINE ANGEW MATH, V336, P45
[2]  
Cohn H., 1956, P AM MATH SOC, V7, P595
[3]  
Godwin H. J., 1960, P CAMBRIDGE PHILOS S, V56, P318
[4]   Universal Quadratic Forms, Small Norms, and Traces in Families of Number Fields [J].
Kala, Vitezslav ;
Tinkova, Magdalena .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, 2023 (09) :7541-7577
[5]   Lifting problem for universal quadratic forms [J].
Kala, Vitezslav ;
Yatsyna, Pavlo .
ADVANCES IN MATHEMATICS, 2021, 377
[6]  
Ko C., 1937, Q J MATH OXFORD, V8, P81, DOI [DOI 10.1093/QMATH/OS-8.1.81, 10.1093/qmath/os-8.1.81]
[7]   Pythagoras numbers of orders in biquadratic fields [J].
Krasensky, Jakub ;
Raska, Martin ;
Sgallova, Ester .
EXPOSITIONES MATHEMATICAE, 2022, 40 (04) :1181-1228
[8]   A cubic ring of integers with the smallest Pythagoras number [J].
Krasensky, Jakub .
ARCHIV DER MATHEMATIK, 2022, 118 (01) :39-48
[9]   SIMPLEST CUBIC FIELDS [J].
LEMMERMEYER, F ;
PETHO, A .
MANUSCRIPTA MATHEMATICA, 1995, 88 (01) :53-58
[10]  
MAASS H, 1941, ABH MATH SEM HAMBURG, V14, P185