Introduction of Al(III)-Ion-Based Solid Polymer Electrolyte Material for Energy Storage Device Applications

被引:4
作者
Verma, Dipendra Kumar [1 ]
Tiwari, Rudramani [1 ]
Kumar, Devendra [1 ]
Yadav, Shashikant [1 ]
Adhikary, Pubali [2 ]
Krishnamoorthi, S. [1 ]
机构
[1] Banaras Hindu Univ, Inst Sci, Ctr Adv Studies, Dept Chem, Varanasi 221005, India
[2] Banaras Hindu Univ, Inst Sci, Cent Discovery Ctr, NMR Lab,SATHI,, Varanasi 221005, India
关键词
aluminium(III); aluminium ion batteries; conductivity; dielectric properties; solid polymers; ALUMINUM; CATHODE; AL;
D O I
10.1002/slct.202302287
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Solid phase electrolyte system PVIm-R-PEG-AlCl3 is introduced for Al(III) ion-based energy storage material. Here, we introduced [AlCl3Br](-) counter anion system with N-octyl-polyvinyl imidazolium polymer matrix supported by PEG. Electrolyte material shows good thermal stability with a Glass transition temperature (Tg similar to 148 degrees C), which provides a good working temperature range for material processing. PVIm-R-PEG-AlCl3 shows electrochemical stability of 1.5 V and redox properties, it has 96% of ionic conduction against the Al metal. The conductivity of electrolyte material is found in the range of 10(-5) S/cm at room temperatures and 10(-4) S/cm at higher temperature (>40 degrees C). The polymer electrolyte matrix shows the mobility of 1.37x10(-6) m(2)/Vs and drift ionic velocity of 3.42x10(-4) m/s at 30 degrees C. The ionic movement of Al(III) ions inside the matrix follows correlated type hopping with the activation energy of 0.266 eV. This Al(III) ion-based solid polymer electrolyte (SPE) is associated with a large amount of capacitance with a tiny electrode contribution.
引用
收藏
页数:10
相关论文
共 33 条
[1]   Characterization and adsorptive properties of cross-linked poly (1-vinylimidazole)-iron (III) complex synthesized in supercritical carbon dioxide [J].
Chi, Hui ;
Chen, Pei ;
Cao, Liqin ;
Wu, Xiujuan ;
Wang, Jide .
E-POLYMERS, 2016, 16 (05) :403-410
[2]   Nanocomposite polymer electrolytes for lithium batteries [J].
Croce, F ;
Appetecchi, GB ;
Persi, L ;
Scrosati, B .
NATURE, 1998, 394 (6692) :456-458
[3]   Determination of Transport Parameters in Liquid Binary Electrolytes: Part II. Transference Number [J].
Ehrl, Andreas ;
Landesfeind, Johannes ;
Wall, Wolfgang A. ;
Gasteiger, Hubert A. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (12) :A2716-A2731
[4]  
Erdem B., 2016, Anadolu University Journal of Science and Technology B - Theoretical Sciences, V17, P974
[5]  
Fard L.S., 2020, J COMPOSITES COMPOUN, V2, P138, DOI [10.29252/jcc.2.3.5, DOI 10.29252/JCC.2.3.5]
[6]   Physicochemical Characterization of AlCl3-1-Ethyl-3-methylimidazolium Chloride Ionic Liquid Electrolytes for Aluminum Rechargeable Batteries [J].
Ferrara, Chiara ;
Dall'Asta, Valentina ;
Berbenni, Vittorio ;
Quartarone, Eliana ;
Mustarelli, Piercarlo .
JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (48) :26607-26614
[7]   Thermal Behavior, Stability, and Decomposition Mechanism of Poly(N-vinylimidazole) [J].
Fodor, Csaba ;
Bozi, Janos ;
Bazso, Marianne ;
Ivan, Bela .
MACROMOLECULES, 2012, 45 (22) :8953-8960
[8]   Aluminum-air batteries: A viability review [J].
Goel, P. ;
Dobhal, D. ;
Sharma, R. C. .
JOURNAL OF ENERGY STORAGE, 2020, 28
[9]   Interface issues of lithium metal anode for high-energy batteries: Challenges, strategies, and perspectives [J].
Han, Yiyao ;
Liu, Bo ;
Xiao, Zhen ;
Zhang, Wenkui ;
Wang, Xiuli ;
Pan, Guoxiang ;
Xia, Yang ;
Xia, Xinhui ;
Tu, Jiangping .
INFOMAT, 2021, 3 (02) :155-174
[10]   High temperature sodium batteries: status, challenges and future trends [J].
Hueso, Karina B. ;
Armand, Michel ;
Rojo, Teofilo .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (03) :734-749