scQCEA: a framework for annotation and quality control report of single-cell RNA-sequencing data

被引:2
作者
Nassiri, Isar [1 ]
Fairfax, Benjamin [2 ,3 ,4 ]
Lee, Angela [1 ]
Wu, Yanxia [1 ]
Buck, David [1 ]
Piazza, Paolo [1 ]
机构
[1] Univ Oxford, Oxford Genom Ctr, Wellcome Ctr Human Genet, Nuffield Dept Med, Oxford, England
[2] Univ Oxford, MRC Weatherall Inst Mol Med, Oxford, England
[3] Univ Oxford, Dept Oncol, Oxford, England
[4] Oxford Univ Hosp NHS Fdn Trust, Churchill Hosp, Oxford Canc Ctr, Oxford, England
基金
英国惠康基金;
关键词
Single cell RNA sequencing; Transcriptomics; Genomics; Cell type annotation;
D O I
10.1186/s12864-023-09447-6
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background Systematic description of library quality and sequencing performance of single-cell RNA sequencing (scRNA-seq) data is imperative for subsequent downstream modules, including re-pooling libraries. While several packages have been developed to visualise quality control (QC) metrics for scRNA-seq data, they do not include expression-based QC to discriminate between true variation and background noise.Results We present scQCEA (acronym of the single-cell RNA sequencing Quality Control and Enrichment Analysis), an R package to generate reports of process optimisation metrics for comparing sets of samples and visual evaluation of quality scores. scQCEA can import data from 10X or other single-cell platforms and includes functions for generating an interactive report of QC metrics for multi-omics data. In addition, scQCEA provides automated cell type annotation on scRNA-seq data using differential gene expression patterns for expression-based quality control. We provide a repository of reference gene sets, including 2348 marker genes, which are exclusively expressed in 95 human and mouse cell types.Using scRNA-seq data from 56 gene expressions and V(D)J T cell replicates, we show how scQCEA can be applied for the visual evaluation of quality scores for sets of samples. In addition, we use the summary of QC measures from 342 human and mouse shallow-sequenced gene expression profiles to specify optimal sequencing requirements to run a cell-type enrichment analysis function.Conclusions The open-source R tool will allow examining biases and outliers over biological and technical measures, and objective selection of optimal cluster numbers before downstream analysis. scQCEA is available at as an R package. Full documentation, including an example, is provided on the package website.
引用
收藏
页数:9
相关论文
共 25 条
  • [11] scRNABatchQC: multi-samples quality control for single cell RNA-seq data
    Liu, Qi
    Sheng, Quanhu
    Ping, Jie
    Ramirez, Marisol Adelina
    Lau, Ken S.
    Coffey, Robert J.
    Shyr, Yu
    [J]. BIOINFORMATICS, 2019, 35 (24) : 5306 - 5308
  • [12] Current best practices in single-cell RNA-seq analysis: a tutorial
    Luecken, Malte D.
    Theis, Fabian J.
    [J]. MOLECULAR SYSTEMS BIOLOGY, 2019, 15 (06)
  • [13] EmptyDrops: distinguishing cells from empty droplets in droplet-based single-cell RNA sequencing data
    Lun, Aaron T. L.
    Riesenfeld, Samantha
    Andrews, Tallulah
    The Phuong Dao
    Gomes, Tomas
    Marioni, John C.
    [J]. GENOME BIOLOGY, 2019, 20
  • [14] Automated methods for cell type annotation on scRNA-seq data
    Pasquini, Giovanni
    Arias, Jesus Eduardo Rojo
    Schaefer, Patrick
    Busskamp, Volker
    [J]. COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2021, 19 : 961 - 969
  • [15] iS-CellR: a user-friendly tool for analyzing and visualizing single-cell RNA sequencing data
    Patel, Mitulkumar V.
    [J]. BIOINFORMATICS, 2018, 34 (24) : 4305 - 4306
  • [16] Spatial reconstruction of single-cell gene expression data
    Satija, Rahul
    Farrell, Jeffrey A.
    Gennert, David
    Schier, Alexander F.
    Regev, Aviv
    [J]. NATURE BIOTECHNOLOGY, 2015, 33 (05) : 495 - U206
  • [17] ascend: R package for analysis of single-cell RNA-seq data
    Senabouth, Anne
    Lukowski, Samuel W.
    Hernandez, Jose Alquicira
    Andersen, Stacey B.
    Mei, Xin
    Nguyen, Quan H.
    Powell, Joseph E.
    [J]. GIGASCIENCE, 2019, 8 (08):
  • [18] Tissue-based map of the human proteome
    Uhlen, Mathias
    Fagerberg, Linn
    Hallstroem, Bjoern M.
    Lindskog, Cecilia
    Oksvold, Per
    Mardinoglu, Adil
    Sivertsson, Asa
    Kampf, Caroline
    Sjoestedt, Evelina
    Asplund, Anna
    Olsson, IngMarie
    Edlund, Karolina
    Lundberg, Emma
    Navani, Sanjay
    Szigyarto, Cristina Al-Khalili
    Odeberg, Jacob
    Djureinovic, Dijana
    Takanen, Jenny Ottosson
    Hober, Sophia
    Alm, Tove
    Edqvist, Per-Henrik
    Berling, Holger
    Tegel, Hanna
    Mulder, Jan
    Rockberg, Johan
    Nilsson, Peter
    Schwenk, Jochen M.
    Hamsten, Marica
    von Feilitzen, Kalle
    Forsberg, Mattias
    Persson, Lukas
    Johansson, Fredric
    Zwahlen, Martin
    von Heijne, Gunnar
    Nielsen, Jens
    Ponten, Fredrik
    [J]. SCIENCE, 2015, 347 (6220)
  • [19] Vallejos CA, 2017, NAT METHODS, V14, P565, DOI [10.1038/NMETH.4292, 10.1038/nmeth.4292]
  • [20] Identifying cell types to interpret scRNA-seq data: how, why and more possibilities
    Wang, Ziwei
    Ding, Hui
    Zou, Quan
    [J]. BRIEFINGS IN FUNCTIONAL GENOMICS, 2020, 19 (04) : 286 - 291