scQCEA: a framework for annotation and quality control report of single-cell RNA-sequencing data

被引:2
作者
Nassiri, Isar [1 ]
Fairfax, Benjamin [2 ,3 ,4 ]
Lee, Angela [1 ]
Wu, Yanxia [1 ]
Buck, David [1 ]
Piazza, Paolo [1 ]
机构
[1] Univ Oxford, Oxford Genom Ctr, Wellcome Ctr Human Genet, Nuffield Dept Med, Oxford, England
[2] Univ Oxford, MRC Weatherall Inst Mol Med, Oxford, England
[3] Univ Oxford, Dept Oncol, Oxford, England
[4] Oxford Univ Hosp NHS Fdn Trust, Churchill Hosp, Oxford Canc Ctr, Oxford, England
基金
英国惠康基金;
关键词
Single cell RNA sequencing; Transcriptomics; Genomics; Cell type annotation;
D O I
10.1186/s12864-023-09447-6
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background Systematic description of library quality and sequencing performance of single-cell RNA sequencing (scRNA-seq) data is imperative for subsequent downstream modules, including re-pooling libraries. While several packages have been developed to visualise quality control (QC) metrics for scRNA-seq data, they do not include expression-based QC to discriminate between true variation and background noise.Results We present scQCEA (acronym of the single-cell RNA sequencing Quality Control and Enrichment Analysis), an R package to generate reports of process optimisation metrics for comparing sets of samples and visual evaluation of quality scores. scQCEA can import data from 10X or other single-cell platforms and includes functions for generating an interactive report of QC metrics for multi-omics data. In addition, scQCEA provides automated cell type annotation on scRNA-seq data using differential gene expression patterns for expression-based quality control. We provide a repository of reference gene sets, including 2348 marker genes, which are exclusively expressed in 95 human and mouse cell types.Using scRNA-seq data from 56 gene expressions and V(D)J T cell replicates, we show how scQCEA can be applied for the visual evaluation of quality scores for sets of samples. In addition, we use the summary of QC measures from 342 human and mouse shallow-sequenced gene expression profiles to specify optimal sequencing requirements to run a cell-type enrichment analysis function.Conclusions The open-source R tool will allow examining biases and outliers over biological and technical measures, and objective selection of optimal cluster numbers before downstream analysis. scQCEA is available at as an R package. Full documentation, including an example, is provided on the package website.
引用
收藏
页数:9
相关论文
共 25 条
  • [1] Aibar S, 2017, NAT METHODS, V14, P1083, DOI [10.1038/NMETH.4463, 10.1038/nmeth.4463]
  • [2] Differentiation dynamics of mammary epithelial cells revealed by single-cell RNA sequencing
    Bach, Karsten
    Pensa, Sara
    Grzelak, Marta
    Hadfield, James
    Adams, David J.
    Marioni, John C.
    Khaled, Walid T.
    [J]. NATURE COMMUNICATIONS, 2017, 8
  • [3] Dimensionality reduction for visualizing single-cell data using UMAP
    Becht, Etienne
    McInnes, Leland
    Healy, John
    Dutertre, Charles-Antoine
    Kwok, Immanuel W. H.
    Ng, Lai Guan
    Ginhoux, Florent
    Newell, Evan W.
    [J]. NATURE BIOTECHNOLOGY, 2019, 37 (01) : 38 - +
  • [4] Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells
    Buettner, Florian
    Natarajan, Kedar N.
    Casale, F. Paolo
    Proserpio, Valentina
    Scialdone, Antonio
    Theis, Fabian J.
    Teichmann, Sarah A.
    Marioni, John C.
    Stegie, Oliver
    [J]. NATURE BIOTECHNOLOGY, 2015, 33 (02) : 155 - 160
  • [5] A single-cell hematopoietic landscape resolves 8 lineage trajectories and defects in Kit mutant mice
    Dahlin, Joakim S.
    Hamey, Fiona K.
    Pijuan-Sala, Blanca
    Shepherd, Mairi
    Lau, Winnie W. Y.
    Nestorowa, Sonia
    Weinreb, Caleb
    Wolock, Samuel
    Hannah, Rebecca
    Diamanti, Evangelia
    Kent, David G.
    Gottgens, Berthold
    Wilson, Nicola K.
    [J]. BLOOD, 2018, 131 (21) : E1 - E11
  • [6] Peripheral CD8+ T cell characteristics associated with durable responses to immune checkpoint blockade in patients with metastatic melanoma
    Fairfax, Benjamin P.
    Taylor, Chelsea A.
    Watson, Robert A.
    Nassiri, Isar
    Danielli, Sara
    Fang, Hai
    Mahe, Elise A.
    Cooper, Rosalin
    Woodcock, Victoria
    Traill, Zoe
    Al-Mossawi, M. Hussein
    Knight, Julian C.
    Klenerman, Paul
    Payne, Miranda
    Middleton, Mark R.
    [J]. NATURE MEDICINE, 2020, 26 (02) : 193 - +
  • [7] ASAP: a web-based platform for the analysis and interactive visualization of single-cell RNA-seq data
    Gardeux, Vincent
    David, Fabrice P. A.
    Shajkofci, Adrian
    Schwalie, Petra C.
    Deplancke, Bart
    [J]. BIOINFORMATICS, 2017, 33 (19) : 3123 - 3125
  • [8] Comprehensive generation, visualization, and reporting of quality control metrics for single-cell RNA sequencing data
    Hong, Rui
    Koga, Yusuke
    Bandyadka, Shruthi
    Leshchyk, Anastasia
    Wang, Yichen
    Akavoor, Vidya
    Cao, Xinyun
    Sarfraz, Irzam
    Wang, Zhe
    Alabdullatif, Salam
    Jansen, Frederick
    Yajima, Masanao
    Johnson, W. Evan
    Campbell, Joshua D.
    [J]. NATURE COMMUNICATIONS, 2022, 13 (01)
  • [9] Fully-automated and ultra-fast cell-type identification using specific marker combinations from single-cell transcriptomic data
    Ianevski, Aleksandr
    Giri, Anil K.
    Aittokallio, Tero
    [J]. NATURE COMMUNICATIONS, 2022, 13 (01)
  • [10] SCHNAPPs- Single Cell sHiNy APPlication(s)
    Jagla, Bernd
    Libri, Valentina
    Chica, Claudia
    Rouilly, Vincent
    Mella, Sebastien
    Puceat, Michel
    Hasan, Milena
    [J]. JOURNAL OF IMMUNOLOGICAL METHODS, 2021, 499