Machine learning modeling of RNA structures: methods, challenges and future perspectives

被引:12
作者
Wu, Kevin E.
Zou, James Y. [1 ]
Chang, Howard [2 ]
机构
[1] Stanford Univ, Dept Biomed Data Sci, Sch Med, Stanford, CA 94305 USA
[2] Stanford Univ, Ctr Personal Dynam Regulomes, Stanford, CA 94305 USA
关键词
RNA structure prediction; RNA; secondary structure; tertiary structure; machine learning; deep learning; review; SECONDARY STRUCTURE PREDICTION; CONVOLUTIONAL NEURAL-NETWORK; ACCURATE PREDICTION; PROTEIN STRUCTURES; PSEUDOKNOTS; REVEALS; SEQUENCE; CONTEXT; CONSERVATION; EVOLUTIONARY;
D O I
10.1093/bib/bbad210
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The three-dimensional structure of RNA molecules plays a critical role in a wide range of cellular processes encompassing functions from riboswitches to epigenetic regulation. These RNA structures are incredibly dynamic and can indeed be described aptly as an ensemble of structures that shifts in distribution depending on different cellular conditions. Thus, the computational prediction of RNA structure poses a unique challenge, even as computational protein folding has seen great advances. In this review, we focus on a variety of machine learning-based methods that have been developed to predict RNA molecules' secondary structure, as well as more complex tertiary structures. We survey commonly used modeling strategies, and how many are inspired by or incorporate thermodynamic principles. We discuss the shortcomings that various design decisions entail and propose future directions that could build off these methods to yield more robust, accurate RNA structure predictions.
引用
收藏
页数:12
相关论文
共 118 条
[1]  
Adam-Kalfon Pauline., 2021, PwC CBDC Global Index 1st Edition,", DOI [10.1101/2021.01.25.427948, DOI 10.1101/2021.01.25.427948]
[2]   A max-margin training of RNA secondary structure prediction integrated with the thermodynamic model [J].
Akiyama, Manato ;
Sato, Kengo ;
Sakakibara, Yasubumi .
JOURNAL OF BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, 2018, 16 (06)
[3]   In Vivo Mapping of Eukaryotic RNA Interactomes Reveals Principles of Higher-Order Organization and Regulation [J].
Aw, Jong Ghut Ashley ;
Shen, Yang ;
Wilm, Andreas ;
Sun, Miao ;
Lim, Xin Ni ;
Boon, Kum-Loong ;
Tapsin, Sidika ;
Chan, Yun-Shen ;
Tan, Cheng-Peow ;
Sim, Adelene Y. L. ;
Zhang, Tong ;
Susanto, Teodorus Theo ;
Fu, Zhiyan ;
Nagarajan, Niranjan ;
Wan, Yue .
MOLECULAR CELL, 2016, 62 (04) :603-617
[4]   Accurate prediction of protein structures and interactions using a three-track neural network [J].
Baek, Minkyung ;
DiMaio, Frank ;
Anishchenko, Ivan ;
Dauparas, Justas ;
Ovchinnikov, Sergey ;
Lee, Gyu Rie ;
Wang, Jue ;
Cong, Qian ;
Kinch, Lisa N. ;
Schaeffer, R. Dustin ;
Millan, Claudia ;
Park, Hahnbeom ;
Adams, Carson ;
Glassman, Caleb R. ;
DeGiovanni, Andy ;
Pereira, Jose H. ;
Rodrigues, Andria V. ;
van Dijk, Alberdina A. ;
Ebrecht, Ana C. ;
Opperman, Diederik J. ;
Sagmeister, Theo ;
Buhlheller, Christoph ;
Pavkov-Keller, Tea ;
Rathinaswamy, Manoj K. ;
Dalwadi, Udit ;
Yip, Calvin K. ;
Burke, John E. ;
Garcia, K. Christopher ;
Grishin, Nick V. ;
Adams, Paul D. ;
Read, Randy J. ;
Baker, David .
SCIENCE, 2021, 373 (6557) :871-+
[5]   RNA secondary structure prediction with convolutional neural networks [J].
Booy, Mehdi Saman ;
Ilin, Alexander ;
Orponen, Pekka .
BMC BIOINFORMATICS, 2022, 23 (01)
[6]   Viral RNA pseudoknots: versatile motifs in gene expression and replication [J].
Brierley, Ian ;
Pennell, Simon ;
Gilbert, Robert J. C. .
NATURE REVIEWS MICROBIOLOGY, 2007, 5 (08) :598-610
[7]   EFFECT OF RNA SECONDARY STRUCTURE ON POLYADENYLATION SITE SELECTION [J].
BROWN, PH ;
TILEY, LS ;
CULLEN, BR .
GENES & DEVELOPMENT, 1991, 5 (07) :1277-1284
[8]  
Brown TB, 2020, ADV NEUR IN, V33
[9]   The Comparative RNA Web (CRW) Site:: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs:: Correction (vol 3, pg 2, 2002) -: art. no. 15 [J].
Cannone, JJ ;
Subramanian, S ;
Schnare, MN ;
Collett, JR ;
D'Souza, LM ;
Du, YS ;
Feng, B ;
Lin, N ;
Madabusi, LV ;
Müller, KM ;
Pande, N ;
Shang, ZD ;
Yu, N ;
Gutell, RR .
BMC BIOINFORMATICS, 2002, 3 (1)
[10]   Ensemble deep learning in bioinformatics [J].
Cao, Yue ;
Geddes, Thomas Andrew ;
Yang, Jean Yee Hwa ;
Yang, Pengyi .
NATURE MACHINE INTELLIGENCE, 2020, 2 (09) :500-508