SeqOT: A SpatialTemporal Transformer Network for Place Recognition Using Sequential LiDAR Data

被引:32
作者
Ma, Junyi [1 ]
Chen, Xieyuanli [2 ]
Xu, Jingyi [1 ]
Xiong, Guangming [1 ]
机构
[1] Beijing Inst Technol, Beijing 100811, Peoples R China
[2] Natl Univ Def Technol, Changsha 410073, Peoples R China
关键词
Laser radar; Transformers; Feature extraction; Image recognition; Fuses; Location awareness; Point cloud compression; Deep learning methods; LiDAR place recognition; sequence matching;
D O I
10.1109/TIE.2022.3229385
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Place recognition is an important component for autonomous vehicles to achieve loop closing or global localization. In this article, we tackle the problem of place recognition based on sequential 3-D LiDAR scans obtained by an onboard LiDAR sensor. We propose a transformer-based network named SeqOT to exploit the temporal and spatial information provided by sequential range images generated from the LiDAR data. It uses multiscale transformers to generate a global descriptor for each sequence of LiDAR range images in an end-to-end fashion. During online operation, our SeqOT finds similar places by matching such descriptors between the current query sequence and those stored in the map. We evaluate our approach on four datasets collected with different types of LiDAR sensors in different environments. The experimental results show that our method outperforms the state-of-the-art LiDAR-based place recognition methods and generalizes well across different environments. Furthermore, our method operates online faster than the frame rate of the sensor.
引用
收藏
页码:8225 / 8234
页数:10
相关论文
共 44 条
[11]  
Garg S., 2022, PMLR, P429
[12]   SeqNet: Learning Descriptors for Sequence-Based Hierarchical Place Recognition [J].
Garg, Sourav ;
Milford, Michael .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (03) :4305-4312
[13]  
Geiger A, 2012, PROC CVPR IEEE, P3354, DOI 10.1109/CVPR.2012.6248074
[14]   Patch-NetVLAD: Multi-Scale Fusion of Locally-Global Descriptors for Place Recognition [J].
Hausler, Stephen ;
Garg, Sourav ;
Xu, Ming ;
Milford, Michael ;
Fischer, Tobias .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :14136-14147
[15]   Pyramid Point Cloud Transformer for Large-Scale Place Recognition [J].
Hui, Le ;
Yang, Hang ;
Cheng, Mingmei ;
Xie, Jin ;
Yang, Jian .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :6078-6087
[16]   MulRan: Multimodal Range Dataset for Urban Place Recognition [J].
Kim, Giseop ;
Park, Yeong Sang ;
Cho, Younghun ;
Jeong, Jinyong ;
Kim, Ayoung .
2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, :6246-6253
[17]  
Kim G, 2018, IEEE INT C INT ROBOT, P4802, DOI 10.1109/IROS.2018.8593953
[18]   Learning a Novel LiDAR Submap-Based Observation Model for Global Positioning in Long-Term Changing Environments [J].
Kong, Dong ;
Li, Xu ;
Hu, Yue ;
Xu, Qimin ;
Wang, Aimin ;
Hu, Weiming .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2023, 70 (03) :3147-3157
[19]   Semantic Graph Based Place Recognition for 3D Point Clouds [J].
Kong, Xin ;
Yang, Xuemeng ;
Zhai, Guangyao ;
Zhao, Xiangrui ;
Zeng, Xianfang ;
Wang, Mengmeng ;
Liu, Yong ;
Li, Wanlong ;
Wen, Feng .
2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2020, :8216-8223
[20]   RINet: Efficient 3D Lidar-Based Place Recognition Using Rotation Invariant Neural Network [J].
Li, Lin ;
Kong, Xin ;
Zhao, Xiangrui ;
Huang, Tianxin ;
Li, Wanlong ;
Wen, Feng ;
Zhang, Hongbo ;
Liu, Yong .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (02) :4321-4328